Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

CompPuTERS

ENVIRONMENT
AND

URBAN SYSTEMS

An International Journal

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Computers, Environment and Urban Systems 37 (2013) 45-58

journal homepage: www.elsevier.com/locate/compenvurbsys

Contents lists available at SciVerse ScienceDirect

Computers, Environment and Urban Systems

High performance genetic algorithm for land use planning

Juan Porta®*, Jorge Parapar?, Ramén Doallo?, Francisco F. Rivera®, Inés Santé ¢, Rafael Crecente

2 Computer Architecture Group, University of A Corufia, Spain
5D, Electronics and Computing, University of Santiago de Compostela, Spain
€Land Laboratory, University of Santiago de Compostela, Spain

ARTICLE INFO ABSTRACT

Article history:

Received 8 November 2011

Received in revised form 7 May 2012
Accepted 8 May 2012

Available online 6 June 2012

Keywords:

Land use planning

Genetic algorithms

Parallel programming
Distributed programming
Clusters of multi-core systems
GIS

problems.

This study uses genetic algorithms to formulate and develop land use plans. The restrictions to be
imposed and the variables to be optimized are selected based on current local and national legal rules
and experts’ criteria. Other considerations can easily be incorporated in this approach. Two optimization
criteria are applied: land suitability and the shape-regularity of the resulting land use patches. We con-
sider the existing plots as the minimum units for land use allocation. As the number of affected plots can
be large, the algorithm execution time is potentially high. The work thus focuses on implementing and
analyzing different parallel paradigms: multi-core parallelism, cluster parallelism and the combination
of both. Some tests were performed that show the suitability of genetic algorithms to land use planning

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Land use planning is a broad term that can be applied to differ-
ent processes related to the regulation and management of land
use. According to the FAO (Food and Agriculture Organization of
the United Nations), land use planning is the systematic assess-
ment of potential land and water alternatives for land use and eco-
nomic and social conditions to select and adopt the best land use
options (FAO et al., 1993).

Developing a comprehensive land use plan is a long and labori-
ous process, requiring great effort from public administrations and
technical teams to achieve a good solution. As a result, there is an
increasing demand for tools that support the planning process. One
of the most complex tasks in this process is allocating land use cat-
egories to spatial units, resulting in a land use zoning map. Multi-
ple conflicting objective functions and a high number of spatial
units are involved in this process.

Due to these characteristics, we propose a parallel genetic algo-
rithm for land use zoning that uses an irregular spatial structure
based on a cadastral parcel map. This work is done within the
frame of a project that aims to develop a spatial decision support
system for the development of Municipal Land Use Plans in Galicia,
an autonomous region in Northwest Spain. But as this is a general

* Corresponding author.
E-mail addresses: juan.porta@udc.es (J. Porta), jparaparl@udc.es (J. Parapar),
doallo@udc.es (R. Doallo), ff.rivera@usc.es (F.F. Rivera), ines.sante@usc.es (I. Santé),
rafael.crecente@usc.es (R. Crecente).

0198-9715/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compenvurbsys.2012.05.003

algorithm for optimizing of land use allocation, it can be used to
design different types of land use plans in any region.

Our study cases are the municipalities of Galicia. This region is
characterized by highly fragmented land ownership. Each munici-
pality thus has, on average, about 36,000 plots, leading to high
computational costs for executing the genetic algorithm. To the
best of our knowledge, the related literature represents no solu-
tions for handling large regions with so many plots. Therefore,
one of the main issues to be considered here is using different par-
allelism strategies to reduce the execution time, and thus improv-
ing the algorithm results. Two levels of parallelism are considered:
a lower one for multi-cores based on shared memory paradigms,
and a higher one for clusters based on message passing paradigms.
These two levels can be joined, giving a third hybrid one.

The algorithm has been developed using the Java programming
language. In particular, implementating the multi-core parallelism
uses the standard concurrent programming package included in
the Java Platform, and the cluster version has been implemented
using the specific Java message passing library called MPJ Express
(Shafi, 2011). Java was chosen because the performance gap be-
tween it and native languages (e.g. C and Fortran) has recently nar-
rowed, thanks to the Java Virtual Machine (JVM) Just-in-Time (JIT)
compiler. Moreover, the interest for parallel programming in Java
is rising because of the appealing features of this language for
programming multi-core cluster architectures, particularly the
built-in networking and multi-threading support, and the continu-
ous increase in JVM performance. Furthermore, the number of

46 J. Porta et al./Computers, Environment and Urban Systems 37 (2013) 45-58

available libraries contributes to the productivity of the projects
implemented in Java (Taboada, Tourifio, & Doallo, 2009).

Due to the type of the information involved, using a Geograph-
ical Information System (GIS) (Nyerges & Jankowski, 2009) can be
helpful. As part of this work, two user interfaces were imple-
mented to allow users to work with these algorithms. One of these
interfaces is graphical and embedded into a GIS software, which
makes managing of the tool even easier (Section 7.3). The other
one was intended for environments where using graphical inter-
faces is not allowed, e.g., clusters.

1.1. Related work

Numerous studies have recognized the multi-objective nature
of land use planning problems (Janssen, van Herwijnen, Stewart,
& Aerts, 2008). These objectives often include the land suitability
for the land uses of a land category (Arentze, Borgers, Ma, & Tim-
mermans, 2010; Cromley & Hanink, 1999; Eastman, Jin, Kyem, &
Toledano, 1995; Xibao, Jianming, & Xiaojian, 1995) and some kind
of spatial criteria, especially patch compactness (shape-regularity),
where a patch is defined as a contiguous area within the same land
category (Aerts, Eisinger, Heuvelink, & Stewart, 2003; Aerts, van
Herwijnen, Janssen, & Stewart, 2005; Duh & Brown, 2007; Janssen
et al,, 2008; Kai, Bo, Qing, & Shengxiao, 2009; Stewart, Janssen, &
Herwijnen, 2004). The simplest spatial metrics for evaluating com-
pactness are based on metrics for each land use, including the
number of patches (Aerts et al., 2005; Janssen et al., 2008), the larg-
est patch for each land use (Aerts et al., 2005; Janssen et al., 2008),
or the number of neighboring cells with the same land use (Aerts
et al., 2003; Kai et al., 2009). More complex metrics are based on
the relationship between area and perimeter for each land use
patch, as the average, for all patches of the ratio of the number
of perimeter cells to the total number of cells in the patch (Janssen
et al., 2008), or the average ratio of the perimeter divided by the
square root of the patch area (Aerts et al., 2005). Brookes (2001)
developed a more sophisticated method for patch design based
on a genetic algorithm, applicable only in a raster environment.

Spatial allocation problems involve great computational com-
plexity, as they are combinatorial optimization problems that are
characterized by a large number of alternative solutions. They thus
often require high computation times (Xiao, Bennett, & Armstrong,
2001), especially when the objectives include spatial characteris-
tics like compactness or connectedness (Duh & Brown, 2007).
Due to this, and because the number of spatial units involved in
a land use allocation problem is usually high, searching the optimal
solution requires turning to heuristic algorithms capable of achiev-
ing near-best solutions in a reasonable time (Matthews, Sibbald, &
Craw, 1999). In particular, genetic algorithms have proven efficient
and effective for solving geographical problems (Xiao et al., 2001).
Numerous studies have used genetic algorithms for spatial land
use allocation (Aerts et al., 2005; Balling, Taber, Brown, & Day,
1999; Eldrandaly, 2010; Feng & Lin, 1999; Holzkamper & Seppelt,
2007; Janssen et al., 2008; Kai et al., 2009; Matthews et al., 1999;
Stewart et al., 2004; Xibao et al., 1995; Xin & Zhi-xia, 2008; Zhang,
Zeng, & Bian, 2010). Most algorithms operate on a regular raster
grid. Land use zoning based on a regular grid is unrealistic, as it
may lead to a single land use plot allocated to several categories
or a group of different plots allocated to a single land use category.
The specific planning laws in the study area also require land use
zoning based on cadastral plots. Only two of the cited studies use
irregular spatial units, but the number of units is small in these
cases; 155 in Balling et al. (1999) and six in Xin and Zhi-xia (2008).

The high number of plots involved in a municipal land use plan
leads to high computational costs when running enough iterations
to explore the complete search space. This is why we considered
using parallel computing. Research on parallel computing applied

to geographical information science began over 20 years ago but
most current geographical analytical tools and models are still
based on sequential processing (Guan & Clarke, 2010). Some
researchers have started to implement GIS based on parallel envi-
ronments (Huang, Wei, & Li, 2009). Armstrong and Densham
(1992) describe strategies for parallelizing location-allocation
models, but optimization algorithms for spatial land use allocation
have not been parallelized. Finally, the architecture of processors
that dominate the market presently is multi-core. This fact justifies
parallelizing the proposed algorithms.

The paper is structured as follows: Section 2 introduces the con-
crete land use planning problem that must be resolved. Section 3
explains the main characteristics of the genetic algorithms, for-
mally establishes the optimization problem and discusses the rep-
resentation of the individuals of the genetic problem and other
data structures. Section 4 summarizes a pre-processing stage and
describes the specific characteristics of the genetic algorithm. This
section also explains the functions used to evaluate the land suit-
ability and patch compactness. Section 5 introduces the implemen-
tations of the parallel versions of the algorithm. Section 6 discusses
the experimental results. Section 7 provides details about other
important functionalities of the proposed tool. Finally, Section 8
presents some conclusions and ideas for future work.

2. Land use planning problem definition

As reported in Section 1.1, the land use planning problem can be
formulated using an optimization problem in which each piece of
land is allocated to the best category according to certain criteria
and restrictions.

Galicia land use planning laws define a set of fifteen land use
categories (Lei 2/2002, 2002; Lei 2/2010, 2010). The laws also de-
scribe the restrictions enforced for each category (i.e., the maxi-
mum and minimum size for each one) and establish conditions
about when a piece of land is in one of the following circum-
stances: should be allocated in one category, may be allocated in
one category, or may not be allocated in one category. For some
categories, spatial allocation is completely and uniquely deter-
mined by legal restrictions (i.e., closeness to riversides or roads).
For other categories, the conditions only partially establish their
spatial allocation. We refer to these two groups of categories as
fixed and non-fixed categories, respectively.

Laws and experts in land use planning issues also advise that
the spatial allocation process should consider the current bound-
aries of the existing plots in the municipality, i.e., a plot should
not be divided into several parts with different categories. A plot
whose category is uniquely determined by legal conditions is
called a fixed plot, and the rest are non-fixed plots.

Allocating the categories that cover urban areas and rural settle-
ments should be considered with special attention. On the one
hand, these categories generate the most social controversy among
the inhabitants, mainly due to building restrictions. On the other
hand, the technical conditions for their allocation are usually spe-
cific and difficult to satisfy. Therefore, allocating the rural settle-
ments is calculated first with an evolutionary algorithm (Porta
et al., 2012) and considered input for the genetic algorithm. Our
main concern in this work is to solve the problem of the remaining
categories, including the urban areas to be treated like any other
non-fixed category.

Computations to spatially delimit the fixed categories and
determine the fixed plots can be performed easily using geometric
operations (i.e., buffers, intersections, or differences). In our pro-
posal, they are executed in a pre-processing stage. The problem
is then reduced to assign one non-fixed use category to each of
the non-fixed plots. If the number of non-fixed categories is C,

J. Porta et al./Computers, Environment and Urban Systems 37 (2013) 45-58 47

and N is the number of non-fixed plots, the number of possible
solutions is C". There are fewer possible solutions because of the
constraints, e.g., the maximum and minimum amounts of area that
can be allocated to each non-fixed category.

In general, land use planning regulations do not establish expli-
cit methods to quantitatively evaluate land use plans to compare
different alternatives. There are many variables of different natures
that can be considered to validate any solution to the problem. Our
study, based on experts’ criteria, considers two aspects to be opti-
mized: the compactness of the resulting land use patches and the
land suitability that each plot has for the category allocated to it.
These criteria can be changed in different cases accordingly.

Land use patches are defined as the polygons resulting from the
union of plots allocated to the same category. Their regularity is
estimated as described below, using their geometrical features
(areas and perimeters). Regarding the land suitability of each plot
to each category, this work considers it as a piece of input data
established by experts. In (Santé-Riveira, Crecente-Maseda, & Mir-
anda-Barrés, 2008), the authors discussed different methods for its
estimation and studied methods to determine the optimal total
area to be allocated to each land use. Intervals centred on these
optimal values can be used to choose the upper and lower bounds
of the area constraints. These bounds are also input parameters.

Hence, the objective is to maximize these optimization criteria
for the search space defined by all possible combinations of
non-fixed plots with non-fixed categories, subject to given area
constraints.

The optimization problem can thus be established as maximiz-
ing a fitness function that represents a trade-off between the apti-
tude of the plots to their category and the compactness of the
spots, subject to the condition that the total area of every category
is inside a given interval. Section 4 provides details about this for-
mulation and Section 3 introduces some related concepts.

3. Land use optimization using genetic algorithms

Decision makers consider several, usually conflicting, objectives
in many problems like this one. They are usually called multiobjec-
tive combinatorial optimization (MOCO) problems (Ehrgott & Gan-
dibleux, 2000). MOCO is a discrete optimization problem with
several variables, several objectives and a specific constraint struc-
ture defining the feasible solution set. In our case, the categories of
each N plots define the set of variables, and the objectives are the
aptitude and compactness defined in Section 4.2.2. Because MOCO
problems have discrete natures, they are non-continuous and thus
cannot be solved as linear programming problems. To solve these
problems, researchers have proposed many approximation meth-
ods based on iterative heuristics that intelligently combine differ-
ent concepts for exploring and exploiting the search space. One of
the most robust heuristics is the genetic algorithms.

Genetic algorithms (Goldberg, 1989) are search heuristics that
are often applied to optimization or learning. They are based on
the principles of natural evolution and use terms as genes and indi-
viduals, and operators as selection, crossover and mutation. They
use the “survival of fitness” evolutionary analogy, where the best
individuals survive to the next generations. Genetic algorithms
maintain a set of individuals called the population. Each individual,
or chromosome, encodes a candidate solution and is composed of
genes. With the selection, crossover, mutation and election operators,
individuals evolve and generate a new population.

To formalize the land use optimization problem in a genetic
algorithm, a way to represent individuals must be defined. In Mat-
thews et al. (1999), the authors propose two different genotype
representations. The first one is based on a one-dimensional array,
the land block (LB) representation, in which each land block corre-

sponds to a current plot. The second one is the percentage and pri-
ority (P& P) representation, in which genes hold two values, the
target percentage to be allocated and the priority for each land
use. The LB representation usually requires many blocks, which de-
mands a large amount of memory. Conversely, the P& P represen-
tation often needs more operations and more iterations. There is a
third method to represent the individuals based on a two-dimen-
sional structure, called the grid method (Kai et al., 2009). It divides
the region into rectangular cells, where each cell represents a piece
of land to be classified. This method was rejected due to potential
problems in matching grid-based solutions with plots. In our study,
the plots usually have irregular patterns. Our proposal is to use the
first approach primarily because it fits with the plot information
provided by the GIS, and the computational drawbacks can be re-
duced by the right data structure choice for storing the population.
Parallel implementation can diminish the high execution times.

Each individual gene represents a label that identifies the possi-
ble non-fixed category allocated to the corresponding plot. Individ-
uals consist of as many genes as the number of considered plots
and can thus be large in terms of number of genes. This is why
an optimal use of the available memory becomes a critical issue.
As a consequence, data structures with fast access times must be
carefully chosen.

To validate the quality of individuals, a fitness function with
two components is considered. Section 4.2.2 explains it in-depth.
Individuals that do not satisfy the restrictions are not penalized,
but they are not allowed to exist in the next population.

4. Pre-processing stage and genetic algorithm implementation

This section introduces the preprocessing stage and data struc-
tures chosen to optimize data access time. Our specific problem is
formulated using a genetic algorithm scheme.

4.1. Pre-processing stage and basic data structures

Some information derived from the geographical data is ob-
tained in a pre-processing stage. This information is saved in a file
to be read when the genetic algorithm starts. Both stages are thus
uncoupled, and several executions of the genetic algorithm with
different parameters can be easily performed without rerunning
the pre-processing. Getting most information requires, executing
computationally expensive geometric operations (e.g., intersec-
tions). Using the pre-processing stage, these calculations will be
run just once. The time spent reading the file is negligible com-
pared to the time spent by those operations. In the pre-processing
stage, the plots with fixed category are identified and will not con-
sidered in the genetic algorithm. Furthermore, fixed plots allocated
to non-fixed categories are also identified and marked in the pre-
processing stage; we do not dismiss them, because they influence
the compactness calculation, although they cannot change their
categories.

For compactness, the lengths of the border lines between plots
are needed, so each plot is checked to find all its neighbors (adja-
cent plots). Two plots are neighbors when the length of the borders
they share is greater than zero, which means that two plots are not
neighbors if they only touch each other at one point. Calculating
the neighbors is also a computationally expensive operation. Doing
so at the pre-processing stage thus saves execution time.

Choosing the right data structure to store the neighbors and the
length of its frontier is an important issue, as the genetic algorithm
often accesses this information. It is thus important to minimize
their access time. As the number of neighbors of each plot can dif-
fer, two unidimensional arrays are used to store the list of neigh-
bors: an array of neighbors and an index array. The i-th entry of

48 J. Porta et al./Computers, Environment and Urban Systems 37 (2013) 45-58

the index array indicates the position in which the first neighbor of
the i-th plot is stored in the array of neighbors, where i=1...N,
with N being the number of the considered plots. The neighbors
of each plot are stored consecutively in the array of neighbors.
Fig. 1 shows an example of these two arrays. Neighbors of plot
P2 are P1, P3, P6 and P7, and they are stored starting from position
4 of the array of neighbors (4 is the value of the second entry in the
index array). This structure presents low latency in its access,
which is much lower than a list of lists. The two-dimensional array
is discarded due to the variable number of neighbors of each plot.

The pre-processing stage also involves reading other input data,
including maximum and minimum areas or category weights.
Some geographic information layers, like coast protection, wet-
lands, rivers, railway lines, roads, wind farms, or burnt areas, are
also needed to determinate special zones.

As mentioned above, an individual gene is a label that repre-
sents any category. The number of available categories is usually
small, so the category can be labeled using a single byte. An indi-
vidual is represented by an array of bytes with as many entries
as the number of plots.

The data structure used to store the population is a two-dimen-
sional array of bytes with one row for each individual. To store the
fitness values, a one-dimensional array is also used with as many
entries as the population size. To store new generations, these data
structures must be duplicated, which increases the memory prob-
lem. These data could not be updated in-place, as they are needed
in further steps of the genetic algorithm.

4.2. Genetic algorithm for land use planning

Consider N plots geometrically characterized by their area a;
and perimeter p, and C categories such that each plot is assigned
to only one category; ap;, denotes the aptitude of plot k to the i-
th category established as an input value. Our problem can then
be formulated as obtaining the assignment of each plot to the cat-
egory that maximizes a certain objective function. This function
must be defined considering both aptitude and geometrical crite-
ria. In our proposal, the objective is to find the best assignment
with the largest compacity.

Consider the set of plots assigned to each category such that N;
plots are assigned to the i-th category, and therefore ay, p; and ap;;
are the area, perimeter and aptitude of the j-th plot in the i-th set,
respectively.

4.2.1. Genetic algorithm stages

Fig. 2 shows the pseudocode of our genetic algorithm. In the fol-
lowing paragraphs, all steps are explained using the numbered
lines of the pseudocode as reference.

Plots

P5

P6
P7

1 for(i=1to M) {
2 randomly create P,
3
4 while (execution_time < max_time) {
5 i=1
6 while (i < M) {
7 select P, and P;, where 1 <ig,i1, < M Selection
8 randomly select jo and j; where 1 < jo < j; < N
9 15,U =P, . qu P,1 o Py PLU By Crossover
10 P*PL\I P,Pto PiuP, By,
Jo jo+1" i N

11 for (a=1to Q) {
12 randomly select ky and ky where 1 < ko, ky < N
13 PNM,“ = random_category Mutation
14 PNM,_] = random_category
15
16 P = P, where F(P,) =

= 7]1(11{1“(30) F(Py), F(Py,), F(u)} Election
17 P!, = Ps where F(‘1)

= mazya{F(P;,), F(P,), F(P,), F(F,)}
18 1=14+2
19 }
20 P=F
21 }
22 return P, where F(P,) = max{F(Py), ..., F(Px)}

Fig. 2. Sequential genetic algorithm pseudocode.

Let P be the population with M individuals, P; an individual with
size N (plots), F(P;) the value of the fitness function of P;, P; the
land-use category of the j-th gene (plot) of P;, and Q the number
of genes to be changed by the mutation operator.

The initial individuals are randomly created (lines 1-3), but this
population must be feasible in the sense that it must satisfy the
restrictions imposed in the problem. For severe restrictions, not en-
ough individuals may be created to complete the population. In
that situation, the algorithm stops after several attempts to create
feasible individuals. An alternative might be starting with valid
solutions in the population if experts could provide some such
solutions. Nevertheless, in all tests with real cases, the algorithm
could always generate a valid random population.

The first iteration of the main loop of the genetic algorithm is
executed to obtain a new complete population. The main loop of
the genetic algorithm (lines 4-21) is hereafter called the genetic
loop, and it is the loop in which the selection, crossover, mutation
and election actions are performed.

We use the roulette-wheel technique for the selection stage
(Goldberg & Deb, 1991) (line 7). This is a fitness proportionate
method in which individuals with higher fitness have a higher
probability to be chosen. The main drawback of this method is that
it could reduce the search space if super-individuals, which are

Index array

3

15 19|22

[p2ps|po|P1]P3|Ps[p7|P2]Pa|Pe|P3|Ps|P4|Ps]p2|P3|Ps|p7[P2|Pe|Ps|P1]P7|PolP1]Ps]

Array with neighbours

Fig. 1. Arrays used to store the information about the neighborhood.

J. Porta et al./Computers, Environment and Urban Systems 37 (2013) 45-58 49

individuals with much higher fitness than the rest, are present in
the population. Conversely, this method does not sort individuals
according to their fitness as in rank based methods (Back, 1996).

A two-point crossover (Spears & DeJong, 1991) with random
point-selection is implemented (lines 8-10). It randomly selects
two different plot array positions and swaps the genes of both par-
ents between those two positions. The user establishes the cross-
over probability.

The user can also set the probability of applying mutations. The-
oretically, each individual gene can change with a given probabil-
ity, but the number of genes to be changed (Q) can instead be
determined by multiplying the given probability and individual
length. The genes are randomly selected (lines 11-15). This strat-
egy saves execution time. Mutation rate is an important parameter,
although there is not a way to establish the best value. In fact, it is
directly linked to the problem itself. The literature suggests differ-
ent values for it: DeJong set it to 0.001 (Jong, 1975) and Grefens-
tette to 1/L (where L is the individual size) (Grefenstette, 1986).
In the section devoted to the results, some conclusions about this
issue are shown.

In every genetic loop iteration, two individuals are chosen to be
part of the new population using elitism (lines 16-17). If the cho-
sen individual already exists in the population and the user has
forced the individual uniqueness as a feature of the algorithm, then
it is mutated. If no valid individual is found after a number of
mutations, a new one is randomly created.

The stop criterion is based on time instead of the fitness func-
tion value (line 4) because it is difficult to know which value makes
an individual acceptable. The user must establish for how long the
algorithm be run. Finally, the algorithm returns the individual from
the new population with the best fitness value (line 22).

4.2.2. Fitness function

The fitness function provides a method for quantitatively rank-
ing individuals. By comparing fitness values, we can determinate
whether one individual is better than another. The proposed fit-
ness function contains two addends. The first addend is the land
suitability that each plot has for the category allocated to it, and
the second is the compactness of the resultant land use patches.
We refer to the former as aptitude and the latter as compactness.
Both addends are weighted to allow the user to establish the
importance of one against the other. Eq. (1) defines that.

Fitness = w, » Aptitude + w, x Compactness (1)

where w, and w, are addend weights, and they are input parame-
ters. They are normalized, and their sum must be 1.

Aptitude is calculated using the weighted average of the apti-
tudes for each category. Aptitude for a category is obtained from
the average of the aptitudes that the plots allocated to that cate-
gory have for it, weighted by the area of each plot and normalized
by the total area assigned to the category:

c N ap. x a
Aptitude = > "w; (—Z“ Py * % > 2)

N:
i=1 21;1 ajj

where C is the number of categories, w; is the weight of the i-th cat-
egory (it is an input parameter), N; is the number of plots allocated
to the i-th category, apj; is the aptitude that the j-th plot allocated to
the i-th category has for it, and g; is the area of the j-th plot allo-
cated to the i-th category.

Compactness can be defined in different ways. Our proposal
considers two definitions related to the above explanation: one
based on patches, which are groups of adjacent plots with the same
category, and the other based on categories, where plots are
grouped into categories. Users can choose the function to use.

For compactness based on patches, the following expression de-
fines the function:

ZNPai ajj
i=1 p2
j=1 p;

NPa;)

C
ComPpactness,yches = 411> _w;
i=1

where NPqg; is the number of patches of the i-th category, p; and a;
are the perimeter and area values of the j-th spot of the i-th cate-
gory, respectively, and C and w; have the same meaning as in (2).

This formula arises because, for a given area, a circle maximizes
the so-called circularity (Montero & Bribiesca, 2009), where circu-
larity is defined thus:

drea

Circularity = 41T (4)

perimeter?
Function (3) has high computational costs, as the patches of each
individual of the new population must be calculated in each
iteration.

The compactness function based on categories is also based on
(4) but avoids computing the patches:

c ZM a
i—1 dij
COMPActness yegories = 41Ty W |~

i=1 (Zﬁ]ﬁj)z

where C, w;, N, and a;; have the same meaning as in (2), and pj; is the
perimeter of the j-th plot allocated to the i-th category. This func-
tion presents clearly lower computational costs and, as shown be-
low, produces good results.

The constraints in the size of each category implies: min; <
Z]’.\':foa,-j < max;, where min; and max; are the minimum and maxi-
mum area allowed for the i-th category respectively.

)

5. Parallel genetic algorithm

The genetic algorithm execution times are high due to the large
number of plots and the implicit nature of the problem. To get a
practical algorithm, these execution times must be reduced: the
solution lies in parallelizing the algorithm. Three parallel solutions
were implemented: a multi-core solution based on the shared-
memory paradigm, a cluster one based on the message passing
paradigm and a hybrid one. These target systems are important,
as they are currently widespread.

5.1. The parallel algorithm for multi-cores

Current computers, from servers to laptops and smart-phones,
often have multi-core processors. It is interesting to implement
algorithms to take advantage of this architecture.

We focus on parallelizing the genetic loop, i.e., the processes to
generate new individuals through multiple threads. Each thread
generates a set of individuals by performing selection, crossover,
mutations and the election operation. As threads share memory,
they can all read the same population and update the next
population.

The number of threads is an input parameter. Given this num-
ber and the population size, the number of individuals to be cre-
ated by each thread can be established. This distribution must be
as balanced as possible in terms of execution time. Fig. 3 shows
an example of how the work distribution is performed. All threads
can select any individual from the population, but they can only
write individuals in the new population in the positions assigned
to them.

Fig. 4 shows the structure and stages of the multi-core parallel
genetic algorithm.

50 J. Porta et al./Computers, Environment and Urban Systems 37 (2013) 45-58

Read

Thread 1

Write

Population -

New population

Crossover

Election

Thread 2

Selection
Crossover
Mutation
Election

Thread 3

Selection

Crossover %:

Mutation
Election

Fig. 3. Workload among slave threads in the multi-core algorithm.

Slave processes

Master process

Receive generic parameters

?

from master process

Launch slave processes
(MPJ does that)

New population becomes ‘
the initial population

v

Send generic parameters
to slave processes

Receive best individuals
from slave processes

Send best individuals
to master process

Create initial population

population
completed?

Create new population

Receive global convergence
message from master process

No

Check convergence

No

Send global convergence
message to slave processes

Global
onvergence?

Cross-over

Send population
to slave processes

Receive population
from master process

Replacement

\ A

Y
Save solution

Fig. 4. Multi-core parallel genetic algorithm work flow.

The Java package java.util.concurrent (Java.com, 2011) is used
to launch threads in different cores. For each genetic loop iteration,
a master thread is in charge of starting all slave threads, and it
waits until they finish. Each slave thread is independent of the rest,
so the parallelization is straightforward and efficient. Once the
master thread recovers control, the new population has been al-
ready created and master thread only checks the stop criterion.

With this parallel method there is no guarantee of obtaining
individuals better than those in the same iteration of its sequential
counterpart. Nevertheless, it is possible to run more iterations of
the genetic loop and generate more individuals than the sequential
algorithm in the same time. With this method, convergence can be
reached earlier.

5.2. The parallel algorithm for clusters

Clusters are distributed memory systems, so processes must be
able to send and receive messages to exchange information. An

open-source Java message passing library called MPJ] Express was
thus used.

Each process is executed in a cluster node, and a master process
is in charge of establishing communications with the slave
processes. Each slave executes the whole genetic algorithm inde-
pendently from the other slaves, using its own population. Syn-
chronization with the master process is performed periodically.
This parameter is set by the user, who can choose a period of sec-
onds, minutes or even hours. This synchronization consists of
sending the best individuals from the slaves to the master. After
gathering this information, the master creates a new population.
This new population is then broadcast to the slaves to start the
algorithm again. The master checks the stop criterion. Fig. 5 shows
a summary of this parallel implementation.

This version takes advantage of each slave process generating
its own population at each genetic loop iteration, and it executes
the whole algorithm until synchronization. After synchronization,
the slaves receive the same population that will evolve in their

J. Porta et al./Computers, Environment and Urban Systems 37 (2013) 45-58 51

Share

Read .
population P1

Send best

individuals Write

Execute the

complete
/ algorithm

Population

New population

P2

Execute the

Master

)> Master =

algo;ithm

P3

Execute the
complete
algorithm

Fig. 5. Workload among slave processes in the cluster algorithm.

own way because of the randomness of the genetic operators. The
best individuals obtained from executing different slaves also join
the new population, raising the average fitness and increasing the
search space.

An interesting issue is that implementing the algorithm allows
slave processes to read their own local parameters files. In this
way, different processes can work with different parameters, e.g.
crossover and mutation rates, and selecting new populations after
synchronizations provides a richer set of individuals, thus achiev-
ing more heterogeneity and potentially better results.

5.3. The hybrid algorithm for multi-core clusters

The previous sections proposed two different parallelism envi-
ronments. These environments are orthogonal in that they can be
mixed to produce a new algorithm that can be executed in a cluster
with multi-core nodes taking advantage of both parallel para-
digms. As shown below, this implementation presents better re-
sults in the fitness of the final result, as it exploits multiple
parallelism levels.

Fig. 6 shows the communications between the master and the
slave processes and how they launch local slave threads.

6. Experimental results

For our study, some tests were performed in a Galician munic-
ipality called Guitiriz, with 138,175 plots, 52,045 of which have a
fixed category. The individuals thus have 86,130 genes: 10,232
are fixed plots, so the genetic algorithm considers the 75,898
remaining plots as candidates for category changes. For this munic-
ipality, four non-fixed categories are considered: natural area, agri-
cultural, forestry, and urban. All performance tests were executed
in a cluster node with two Intel Xeon E5520 processors and 8 GB
RAM. Each processor has 4 cores at 2.27 GHz provided with hy-
per-threading (two threads per core are allowed to run simulta-
neously). Using this cluster was shared with other users, so some
variability should be considered regarding the measured execution
times.

6.1. Influence of population size

As a representative case, the results of Fig. 7 correspond to a set
of multi-core parallel executions over 16 threads and 32, 64, 128
and 256 individuals in the population. This figure shows the aver-
age of the values obtained from running the Algorithm 20 times

with each population size for 3 h. The fitness function weights
were 0.25 for the aptitude and 0.75 for the compactness. With
small populations, the algorithm runs more iterations per unit time
and achieves better results in the short-term than the executions
with greater population sizes. However, in the long-term (24 h
for the 256 individuals executions, not shown in Fig. 7), our tests
indicate that the fitness tends to be slightly better with high values
for the population size, presumably because of the increased ex-
plored search space.

6.2. Influence of the mutation rate

Some tests to find the best mutation rate (MR) were also exe-
cuted. Fig. 8 shows the average of five cases executed 20 times each
with a population of 32 individuals and different mutation rates,
using the recommended values mentioned in Section 4.2.1. Each
execution lasted 1 h. These tests also include an adaptive mutation
rate (AMR), which starts with a high value and reduces the MR
(75% in the tests) to change fewer genes and adjust precision when
the best fitness of the population does not improve in a certain
number of iterations (20 in the tests).

These results indicate that executions with high mutation rates
perform poorly. This occurs because too many changes in individ-
uals’ genes make the mutation behavior almost random. If the
mutation rate proposed by Grefenstette is used (1/L, with L the
individual size, that in our case is 1.3174E~°), then the algorithm
obtains the best individuals. Comparing results obtained using
MR and AMR individuals tends to be similar in the long-term,
but at least theoretically, a larger search space is explored using
an AMR.

Fig. 9 depicts the variance of the set of results obtained in the
populations size and mutation rate tests. Note that the values are
quite homogeneous, which prove that the use of the average as
representative data in the plots, is a valid method of measure.

6.3. Comparison between fitness functions

As mentioned above, two compactness functions were imple-
mented: one based on patches, and another one based on catego-
ries. Aiming to study the effects of both functions, a rectangular
parcel map was created. This parcel map has 10,496 plots with dif-
ferent sizes, and each plot has only one suitable category (the apti-
tude is one for this category and zero for the rest). The same list of
categories as the real case (see the beginning of Section 6) is used.

52 J. Porta et al./Computers, Environment and Urban Systems 37 (2013) 45-58

Master process

Slave processes

Y

?

Launch slave processes
(MPJ does that)

New population
becomes the
initial population

No|
Send generic parameters
to slave processes -
Yes
Receive best individuals Send

from slave processes best individuals

to master process

Create new population

Receive global stop
message from

Receive generic
parameters from
master process

Slave threads

Create initial
population Yes

'

Local
population

Launch
threads

master process

Check stop conditions

‘ Send global stop
to slave pr

Yes
Send population Receive population
to slave processes from master process
[i
Y

Save solution

Calculate
total fitness

completed?

Y

Crossover

Genetic Loop

Fig. 6. Hybrid parallel genetic algorithm work flow.

These tests were executed with the multi-core version of the
algorithm using 16 threads in a eight cores machine with hyperth-
reading for 3 h. Tables 1 and 2 show the average of five executions
for each test. The columns show the values of the different fitness
function components for the corresponding configuration: Apt
shows the aptitude value, CC the compactness value by category,
and CP the compactness value by patches. The number of patches
obtained (NPa) and percentage of the plots allocated to the right
category (hits) are also shown.

The rows indicate the configuration with which the algorithm
was executed: label Aptitude means that the fitness function only
considers aptitude; labels Comp. Cats. and Comp. Pats. mean that
the fitness function only considers the compactness by categories
and patches, respectively; Apt:CC X%:Y% and Apt:CP X%:Y% mean
that the fitness function considers both attributes, i.e., aptitude at
X% and compactness (using categories and patches, respectively)
at Y%; and CC + CP X%:Y% mean that both compactness functions
are considered, i.e., using categories at X% and patches at Y%. This
last configuration was added after testing the other configurations.
As the CC configurations reduce the number of patches and the CP

0,19

0,18

Fitness
o
=
[e)}

3
Y A0 A9 99 A1 p0 D ok 1> QL q\‘,&gﬁ,&g‘%,\\fb,\}'\ ,&36,\’559,&35‘,&63,\:\’7«
Minutes

& 32 individuals ==64 individuals 'V 128 individuals =256 individuals

Fig. 7. Fitness versus the population size.

configurations help make them more compacted, a new fitness
function was implemented integrating both compactness methods
as two addends.

The difference between the tables is that the aptitudes for the
plot map were randomly set in Table 1 (hereafter the random allo-
cation), and the aptitudes were set with some compactness (com-
pacted allocation) in Table 2, as in Fig. 10. This figure shows the
aptitude-based optimal plot map, as the best category is allocated
to each plot. Compacted allocation is closer to reality.

Tables 1 and 2 show that when only the aptitude is used, our
algorithm achieves 100% of hits (first row in both tables). In real
cases, the aptitude value of the categories is neither one nor zero
but takes intermediate values, so it is more difficult to reach
100% of hits.

With the aptitude random allocation (Table 1) and using only
compactness by categories (second row), the number of patches
between executions can change considerably (in our tests, from
53 to 213 patches, 143 is the average). This occurs because each
execution starts with a random solution, and the groups of catego-
ries obtained thus differ. As the aptitude is ignored in this case, the

Fitness

vvvvvvvvvvvvvvvvvvvvvv

vV
VVVVVVVVVVVVVVVVV
SAAAY

3
3 b 1404240499275 12 3% 2k A1 p0 pD 30 pO gL H P

Minutes
= MR = 0.001 == AMR = 0.0001 VMR = 0.0001
*= AMR = 0.00004 #=MR = 1.3176E-5

Fig. 8. Aptitude versus static mutation rate and adaptive mutation rate.

J. Porta et al./Computers, Environment and Urban Systems 37 (2013) 45-58 53

0,184

0,182

Fitness

0,178

0,176

0,174

32 indiv 64 indiv 128 indiv 256 indiv

0,18

0,17 4

0,16 1

0,15

Fitness

0,14

0,131

0,12 T T v .
MR=0.001 AMR=0.0001 MR=0.0001 AMR =0.00004 MR = 1,3176E-5

Fig. 9. Box plots of the population size (A) and mutation rate (B) tests.

evolution of the individuals can be quite different. If 25% of the
aptitude is added to the fitness function, that variance is reduced
(from 73 patches as minimum to 211 as maximum) and the num-
ber of hits slightly increases. With a fifty-fifty balance between
aptitude and compactness, the algorithm almost reaches 100% of
hits. With the same compactness method in the fitness function
but using the compacted allocation as a plot map (Table 2), less
compactness is obtained as more aptitude is added, but more hits
are achieved and the number of patches is closer to the aptitude-
based optimal plot map.

When using only compactness by patches, many patches are
created. This happens using any allocation method in the plot
map (as in the bottom half of Tables 1 and 2). If both compactness
functions are combined, a good relation among CC, CP, and NPa is
obtained because compactness by categories tends to create fewer
patches, and compactness by patches helps make them more com-
pacted. If the goal is more hits, i.e., if it is more important to choose
the suitable category than achieve a good compactness degree, a
percentage of aptitude can be added to the fitness function. In
the results with random allocation, the number of patches ob-
tained was varied from 104 to 419. With compactness allocation,
however, this variance was reduced (from 136 to 160 patches).

Fig. 11 shows the results obtained executing the CC + CP:50-
50% configuration using both plot maps of Fig. 10. As in Tables 1
and 2, this is the best configuration to reach an agreement between
all measured parameters. Comparing both solutions, the one using
the compacted allocation (Table 2) as a plot map has fewer difficul-
ties in achieving a compacted solution with few patches but many
hits. As real cases often have that aptitude distribution, the results
can be considered satisfactory.

Finally, as shown in a real case in Section 6.5, these tables can
help decide fitness function weights depending on the goals the
planning expert wants to reach: aptitude, compactness, number
of patches, or number of hits.

6.4. Performance results

Fig. 12 shows the speed-up evolution for the multi-core parallel
versions versus the sequential version (a single-threaded execution
disabling core hyperthreading), and Fig. 13 shows speed-up (A)
and efficiency (B) for a particular case, considering 20,000 itera-
tions. The parallel algorithm executions present super-linear
speed-up, while the number of threads used by the parallel genetic
algorithm is less than or equal to the number of physical computer
cores, 4 in this case. This occurs due to a better memory hierarchy
utilization, as each thread must deal with less data. Though speed-
up still increases, efficiency decreases using more cores, as hyper-
threading is not as efficient as using a different physical core for
each thread (as expected according to the reports of the proper
microprocessor manufacturers). Hyper-threading allows executing
more than one thread simultaneously; as threads share some cpre
resources, real performance only increases by 30-40 per cent at
most. The charts shown in these two figures were obtained from
the average of 20 executions performed for each test.

The speed-up for the cluster algorithm version is not shown, be-
cause that parallelization method aims to improve fitness in the
shortest time. In this case, the speed-up of the slower node condi-
tions the speed-up.

Fig. 14 shows the fitness of the hybrid version versus the multi-
core version. For these tests, 16 threads were used per node for

Table 1 Table 2
Comparison between fitness functions with random aptitudes. Comparison between fitness functions with compact aptitudes.
Apt cC CcP NPa Hits (%) Apt cC CP NPa Hits (%)

Aptitude (Apt) 1 0.000633 0.6655 5387 100 Aptitude (Apt) 1 0.0138 0.4620 165 100
Comp. cats. (CC) 0.3005 0.0555 0.6392 143 28.14 Comp. cats. (CC) 0.6172 0.0494 0.5739 65 52.07
Apt:CC 25%:75% 0.3229 0.0408 0.6022 110 29.53 Apt:CC 25%:75% 0.6187 0.0505 0.5863 68 52.85
Apt:CC 50%:50% 1 0.000633 0.6655 5386 99.99 Apt:CC 50%:50% 0.7051 0.043 0.0.5691 73 61.41
Apt:CC 75%:25% 1 0.000633 0.6655 5387 100 Apt:CC 75%:25% 0,9387 0.0169 0.502 137 92.73
Comp. pats. (CP) 0.4972 0.000816 0.7787 6244 48.70 Comp. pats. (CP) 0.6908 0.0021 0.7795 4030 56.39
Apt:CP 25%:75% 0.9095 0.000604 0.7509 7065 78.45 Apt:CP 25%:75% 0.95 0.0042 0.7728 2747 83.44
Apt:CP 50%:50% 0.9712 0.000572 0.7172 6934 91.04 Apt:CP 50%:50% 0.9716 0.006 0.7639 1769 89.60
Apt:CP 75%:25% 0.9992 0.000631 0.6677 5445 99.76 Apt:CP 75%:25% 0.9841 0.0078 0.7481 1153 93.79
CC + CP 50%:50% 0.3374 0.0191 0.6975 327 33.20 CC + CP 50%:50% 0.7636 0.0264 0.6330 144 72.22

54 J. Porta et al./ Computers, Environment and Urban Systems 37 (2013) 45-58

(A) (B)

Fig. 10. Plot maps: random allocation (A) and compacted one (B).

(A) (B)

Fig. 11. Plot map results for the CC + CP:50-50% configuration: random allocation (A) and compacted one (B).

both algorithms versions. The hybrid version was executed in two,
four and eight nodes with different synchronization times. All exe-
cutions using the hybrid version provided better results than those
using the multi-core version.

Focusing on the hybrid algorithm executions, Fig. 14 shows how
the best results are obtained using 2 nodes with 15 min between
synchronizations and 4 nodes with 6 min. The curve of the execu-
tions with 2 nodes tends to stand still, but the curve of the execu-
tions with 4 nodes (specially with 6-min synchronizations) has a
steeper slope than the 2-node executions. Nevertheless, the differ-
ences between fitness among these executions are small. Execu-
tions with 8 nodes achieve lower fitness than the other
executions, but longer executions may achieve better results. As
mentioned above, the stop criterion was based on execution time,
so these tests were executed during 3 h to see the results clearly.

6.5. Real case test

Fig. 15 shows a solution provided by the algorithm for the Guit-
iriz test case. This municipality has 138,175 plots, 52,045 of which
have a fixed category. Knowing that the plot map of Guitiriz has
some compactness in their aptitudes, according to the Table 2,
tests were executed using the Apt:CC 50%:50% to get a good rela-
tion between the number of patches and hits. As the different col-
ors indicate, plot patches form the expected regular polygons.
White patches correspond to fixed categories, like riversides or
roads. Other patches include the remaining plots, fixed and not-
fixed.

Fig. 16 compares the solution generated by the algorithm and
one provided by experts. The first solution has more white patches
(fixed categories), because expertos do not always account for pro-
tection zones around rivers or roads. Apart from this, both solu-
tions have considerable similarities, and the algorithm solution is
a good starting point for the experts.

7. Additional functionalities

Some functionalities are included in the algorithm implementa-
tion to help users and handle possible system failures.

=
o

Speed-up
H N W A U OO N 00O

Q Q Q Q Q Q Q Q Q Q
NS SRS R R S R R N N IR SR e

Iterations

2 threads =4 threads V 8 threads ==16 threads #=32 threads

Fig. 12. Speed-up for the multi-core parallel versions against the sequential one.

J. Porta et al./Computers, Environment and Urban Systems 37 (2013) 45-58 55

10
1
9
8
0,8
7
6 > 0,6
(=% ,
? 5 2
8 0
)
g 4 £ 04
%) L
3
2 0,2
1
2 threads 8 threads 32 threads 2 threads 8 threads 32 threads
4 threads 16 threads 4 threads 16 threads
Fig. 13. Speed-up (A) and efficiency (B) in the iteration 20,000 of the multi-core parallel versions against the sequential one.
R EECEEERRLLIR AL EEEELECeeeeeestentetest SRR EEREERELELEEELLELLTIERELLLEEEIERLAD)
[}
0
(]
c
s
[
/ 0 b 08 (3L 30 a0 Y D g 160 (D 6 A L 10 80
0,12

Y0 A% 9L 99 20 D P gl ogr AN 12 P gl o ,&06 ,&»\:‘5 '\'LQ '\'1:‘ \fbb‘ AR ,&b‘% ,&5‘) ,\Q,'L »\69 ,\j\‘b

Minutes

W Multicore == MP) 4 nodes 3' sync
#= MPJ 2 nodes 3' sync < MPJ 2 nodes 6' sync
W MPJ] 8 nodes 6' sync =" MPJ 8 nodes 15' sync

V' MPJ 4 nodes 6' sync ™ MP) 4 nodes 15' sync
w4 MPJ 2 nodes 15' sync "X*MPJ 8 nodes 3' sync

Fig. 14. Fitness value for the multi-core version against the hybrid version.

7.1. Checkpointing

A mechanism to continue execution after possible system
breakdowns was implemented, based on the idea of periodically
saving the algorithm state. All individuals of the current popula-
tion, including their fitness and some additional general informa-
tion, are saved. If the algorithm stops for any reason, it can thus
be rerun starting from the last stored data. Depending on the exe-
cution mode, i.e., sequential or parallel versions, the checkpointing
was implemented in different ways. When the algorithm finishes
each genetic loop iteration, it checks whether it is time to save
the checkpoint file. In the cluster/hybrid parallel model, the
master process is in charge of performing the checkpoint right
after each synchronization. As the amount of information to be
stored in the checkpointing files can be large, these files are
compressed.

7.2. Saving the best individual

After every iteration in the sequential and multi-core algorithm
versions, the best individual from the entire population is saved. At
the end of the algorithm, the solution is the best individual ob-
tained at any iteration during the execution. Regarding the cluster
and hybrid versions, this operation is performed after every syn-
chronization. Every slave also saves the best individual, and they
are sent to the master process at the synchronization point.

7.3. User interfaces

To implement the algorithm, a Java-free geospatial analysis tool
called SEXTANTE (Olaya, 2011) was used. Its main aim is being a
platform to develop geoalgorithms that eases both the implemen-
tation and use of these algorithms. SEXTANTE can be used in

56 J. Porta et al./ Computers, Environment and Urban Systems 37 (2013) 45-58

Roads

Rivers

Fixed Categories
Natural Area
Agricultural
Forestry

Urban

00000NN

Fig. 15. Algorithm output.

(A))

Fig. 16. Comparison between algorithm’s solution (A) and experts’ solution (B).

desktop GIS software like uDig, openJUMP or gvSIG through their core computers and the command-line interface in clusters where
GUI (Graphical User Interface) or command-line interface. The graphical user interfaces cannot be displayed. Fig. 17 shows the
planner can use the GUI of our algorithm in sequential or multi- GUI for gvSIG.

J. Porta et al./ Computers, Environment and Urban Systems 37 (2013) 45-58

57

gvSIG OADE 2010:gvsig rsai.gvp

(=J(=]0<]

Eile Tools Window Help Parallel genetic algorithm for land use planning (%]

A=) E]| ¢ ELAELH Parameters |

{4 SEXTANTE - 315 Algorithms Preprocessed shape [preprocessina.shp - ‘ 1=

SEXTANTE

=-Algorithms rOptions
@-Basic hydrological analysis Initial population size ISO ‘
#-Basic tools for raster layers
&-Buffers Crossover rate 1.0]
@-Calculus tools for raster layer Mutation rate [0.0020]
@-Cost, distances and routes Times fitness value is equal to reduce... [4]
§ Pasal *It““,'“‘"’ Mutation rate reduction [o5]
&-Fuzzy logic ; :
@~Geomorphometry and terrain analysis Método para el cdlculo de la compaci... [Select one -
@-Geostatistics Number of threads [16]
g-Image processing Hours to execute the algorithm [os]
@-Indices and other hydrological parameters _
Lol statiatics Compactness weight 0.8]
@-Location/allocation Aptitude weight [0.2 \
#-Models Allow identical indnviduals O
@-Pattern analysis File with preprocessing data [ld
#-Planning: Delimitation of rural settlements .
S Podnteg ol e oaanig File to save the solution [

& Geographical parallel simulated annealing algorith| Save result map M

& Parallel genetic algorithm for land use planning

~ % Parallel simulated annealing algorithm Outputs
— Preprocessing algorithm [Qutput vector layerfvector]

[15ave to temporary file]

L) |

i sequertial simulated annealing algorithm L

-

& Solution analysis

el Land. lanning (¢ le)
Planning: Land lanning (exp tal)
Profiles

Raster categoeries analysis
‘Raster creation tools
Rasterization and interpolation
Raster layer analysis

% view : solution-test-2012-
= [v M solution_guitiriz_
[Natural Areas

Reclassify raster layers

Agri
Statistical methods = an\:shtﬂrtyural
Table tools |t

Tools for line layers
Tools for point layers
Tools for polygon layers
Tools for vector layers
Topology

Vectorization
Vegetation indices
Visibility and lighting

-8 & -8--8-8-8-a8-8-8

4]

4]
I Search]l

[T»

| W

i Opening project: gvsig_rsai.gvp

@ View : current-test

[ox][cancel J[i]

o [

Metres X = 582,136,532

[y =4.798.712.27 [EPSG:23030

Fig. 17. GUI for gvSIG with SEXTANTE.

8. Conclusions and future work

This work shows that parallel genetic algorithms are a good
choice to deal with land use planning problems where the number
of possible plot and category combinations could be huge. This
work has reached several conclusions. One conclusion is that this
kind of algorithm can be parallelized and executed in multi-core
systems where it can reach an almost linear speedup. In cluster
systems, the algorithm takes advantage of multiple parallel execu-
tions. If the cluster contains multi-core nodes, both parallelization
strategies can be merged, resulting in a parallel hybrid version of
the algorithm.

Several tests were executed to analyze the algorithm behavior,
depending on the plot map or attributes considered for the fitness
function. The results of these tests were discussed and shown to be
a good starting point for the planning experts. Experts can use the
results in Tables 1 and 2 to configure the algorithm to obtain better
results according to their goals.

Finally, developing efficient parallel Java code has proven to be
a competitive solution: programmability issues are clearly in favor
of Java, where acceptable performance has been obtained.

As future work, one of the most immediate improvements is to
study other functions to evaluate compactness criteria. In particu-
lar, patches of the same category are usually separated by roads or
water bodies, which should be considered to avoid diminishing the

compactness value. Other optimization criteria can also be consid-
ered, including favoring the creation for patches of agricultural
uses next to the localization of existing farms. Creating corridors
to connect patches of natural protected areas should also be pro-
moted. Another idea for future work is applying new parallelism
levels, e.g., in evaluating the fitness function. Finally, we are
working on developing algorithms to limit growth areas for rural
settlements. Comparing the results of the genetic algorithm with
an implementation based on simulated annealing is also in
progress.

Acknowledgements

This work is included in the project named Geographical Infor-
mation Systems for Urban Planning and Land Management using Opti-
mization Techniques on Multi-core Processors (Ref. 08SINO11291PR),
supported by the projects of Consolidation of Competitive Research
Groups (Ref. 2010/06 and 2010/28), all funded by the Galician Re-
gional Government, Spain.

References

Aerts,]. C. J. H,, Eisinger, E., Heuvelink, G. B. M., & Stewart, T. (2003). Using linear
integer programming for multi-site land-use allocation. Geographical Analysis,
35(2), 148-169.

58 J. Porta et al./Computers, Environment and Urban Systems 37 (2013) 45-58

Aerts,]. C. J. H.,, van Herwijnen, M., Janssen, R., & Stewart, T. J. (2005). Evaluating
spatial design techniques for solving land-use allocation problems. Journal of
Environmental Planning and Management, 48(1), 121-142.

Arentze, T. A., Borgers, A. W.]., Ma, L., & Timmermans, H. J. P. (2010). An agent-based
heuristic method for generating land-use plans in urban planning. Environment
and Planning B: Planning and Design, 37, 463-482.

Armstrong, M. P., & Densham, P. J. (1992). Domain decomposition for parallel
processing of spatial problems. Computers, Environment and Urban Systems, 16,
497-513.

Badck, T. (1996). Evolutionary algorithms in theory and practice. Oxford Univ. Press.

Balling, R.]., Taber, J. T., Brown, M. R., & Day, K. (1999). Multiobjective urban
planning using genetic algorithm. Journal of Urban Planning and Development,
125(2), 16-99.

Brookes, C.J. (2001). A genetic algorithm for designing optimal patch configurations
in gis. International Journal of Geographical Information Science, 15(6), 539-559.

Cromley, R. G., & Hanink, D. M. (1999). Coupling land use allocation models with
raster gis. Journal of Geographical Systems, 1, 137-153.

Dubh,]. D., & Brown, D. G. (2007). Knowledge-informed pareto simulated annealing
for multi-objective spatial allocation. Computers, Environment and Urban
Systems, 31, 235-281.

Eastman, J., Jin, W., Kyem, P. A. K., & Toledano,]. (1995). Raster procedures for multi-
criteria/multi-objective decisions. Photogrammetric Engineering & Remote
Sensing, 61(5), 539-547.

Ehrgott, M., & Gandibleux, X. (2000). A survey and annoted bibliography of
multiobjective combinatorial optimization. OR Spektrum.

Eldrandaly, K. (2010). A gep-based spatial decision support system for multisite
land use allocation. Applied Soft Computing, 10, 694-702.

FAO et al. (1993). Guidelines for land-use planning. Development documents series.
Food and Agriculture Organization of the United Nations.

Feng, C. M., & Lin, J. J. (1999). Using a genetic algorithm to generate alternative
sketch maps for urban planning. Computers, Environment and Urban Systems, 23,
91-108.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine
learning (1st ed.). Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc..

Goldberg, D. E., & Deb, K. (1991). A comparative analysis of selection schemes used
in genetic algorithms. In Foundations of Genetic Algorithms (pp. 69-93). Morgan
Kaufmann.

Grefenstette, J. J. (1986). Optimization of control parameters for genetic algorithms.
Systems, Man and Cybernetics, IEEE Transactions, 16(1), 122-128.

Guan, Q., & Clarke, K. C. (2010). A general purpose parallel raster processing
programming library test application using a geographic cellular automata
model. International Journal of Geographical Information Science, 24(5), 695-722.

Holzkamper, A., & Seppelt, R. (2007). A generic tool for optimizing land-use patterns
and landscape structures. Environmental Modelling & Software, 22, 1801-1804.

Huang, H., Wei, Z., & Li, Z. (2009). The geographic information system based on
distributed parallel computation. Networking and digital society. In ICNDS '09
international conference (Vol. 1, pp. 234-237). 30-31 May 2009.

Janssen, R,, van Herwijnen, M., Stewart, T. J., & Aerts,]. C. J. H. (2008). Multiobjective
decision support for land-use planning. Environment and Planning B: Planning
and Design, 35, 740-756.

Java.com, (2011). <http://download.oracle.com/javase/6/docs/api/java/util/
concurrent/package-summary.html> Visited 31.07.11.

Jong, K. D. (1975). An analysis of the behavior of a class of genetic adaptive systems.
Ph.D. thesis. Ann Arbor, MI, USA: University of Michigan.

Kai, C., Bo, H., Qing, Z., & Shengxiao, W. (2009). Land use allocation optimization
towards sustainable development based on genetic algorithm. In
Geoinformatics, 2009 17th international Conference (pp. 1-5). Fairfax, USA

Lei 2/2002, 2002. Galician Official Diary 252, 18,025 - 18,094, Lei 9/2002, do 30 de
decembro, de ordenacién urbanistica e proteccién do medio rural de Galicia (in
Galician).

Lei 2/2010, 2010. Galician Official Diary 61, 4,639 - 4,666, Lei 2/2010, do 25 de
marzo, de medidas urxentes de modificaciéon da Lei 9/2002, do 30 de decembro,
de ordenacién urbanistica e proteccién do medio rural de Galicia (in Galician).

Matthews, K. B., Sibbald, A. R., & Craw, S. (1999). Implementation of a spatial
decision support system for rural land use planning: integrating geographic
information system and environmental models with search and optimisation
algorithms. Computers and Electronics in Agriculture, 23(1), 9-26.

Montero, R. S., & Bribiesca, E. (2009). State of the art of compactness and circularity
measures. International Mathematical Forum, 4(25-28), 1305-1335.

Nyerges, T., & Jankowski, P. (2009). Regional and urban GIS: A decision support
approach. Guilford Press.

Olaya, V. (2011). <www.sextantegis.com> Visited 31.07.11.

Porta, J., Parapar,]., Doallo, R., Barbosa, V. Santé, I, & Crecente, R. (2012).
Evolutionary Algorithm for the demarcation of rural settlements. In Proc. of 9th
world congress of the regional science association international. Timisoara,
Romania. Available from http://www.rsai2012.uvt.ro/.

Santé-Riveira, 1., Crecente-Maseda, R., & Miranda-Barrés, D. (2008). GIS-based
planning support system for rural land-use allocation. Computers and Electronics
in Agriculture, 63(2), 257-273.

Shafi, A. (2011). <http://mpj-express.org/> Visited on 31.07.11.

Spears, W. M., & DeJong, K. (1991). An analysis of multipoint crossover. In Proc. of
Workshop of the Foundations of Genetic Algorithms (pp. 301-315). Bloomington,
USA.

Stewart, T. J., Janssen, R., & Herwijnen, M. (2004). A genetic algorithm approach to
multiobjective land use planning. Computers & Operations Research, 31,
2293-2313.

Taboada, G. L., Tourifio,]., Doallo, R. (2009). Java for high performance computing:
assessment of current research and practice. In 7th international conference on
the principles and practice of programming in java, PPP] 2009. ACM international
conference proceeding series (pp. 30-39). Calgary, Alberta, Canada.

Xiao, N., Bennett, D. A, & Armstrong, M. P. (2001). Interactive evolutionary
approaches to multiobjective spatial decision making: A synthetic review.
Computers, Environment and Urban Systems, 31, 232-252.

Xibao, X., Jianming, Z., & Xiaojian, Z. (1995). Integrating gis, cellular automata and
genetic algorithm in urban spatial optimization - A case study of lanzhou.
Proceedings of SPIE, 6420. 64201U-1-64201U-10.

Xin, H., & Zhi-xia, Z. (2008). Application of genetic algorithm to spatial distribution
in urban planning. In IEEE international symposium on knowledge acquisition and
modeling workshop (pp. 1026-1029). Wuhan, China.

Zhang, H. H., Zeng, Y. N, & Bian, L. (2010). Simulating multi-objective spatial
optimization allocation of land use based on the integration of multi-agent
system and genetic algorithm. International Journal of Environmental Research,
4(4), 765-776.

