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a b s t r a c t

In recent years, cellular automata (CA) models for urban growth simulation have proliferated because
of their simplicity, flexibility and intuitiveness, and particularly because of their ability to incorporate
the spatial and temporal dimensions of the processes. Though apparently simple, CA models are capable
of modeling complex dynamic systems such as urban systems. Currently, one of the main problems in
actually applying CA models to urban planning practice is the choice or design of the most suitable CA
model. For this reason, a review of urban CA models applied to real-world cases is provided, along with
an analysis of their capabilities and limitations. The review and classification of CA models based on the
Urban cellular automata
Urban model
Urban simulation
U
U

main characteristics of the models has allowed for the analysis of their strengths and weaknesses. Finally,
a discussion of the needs for further research is presented.
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. Introduction

In recent decades, a number of modeling techniques have been
eveloped to better understand and predict urban growth. Early
tudies of urban processes used transportation and land-use plan-
ing models based on gravity theory or optimizing mathematics,
ut soon evolved into more dynamic spatial models (Berling-Wolff
nd Wu, 2004a), such as cellular automata (CA).

CA were first developed in the late 1940s by S. Ulan and J. von
eumann like copies of the same Turing machine placed at each cell
f a lattice and connected together. Wolfram (1984) demonstrated
hat complex natural phenomena can be modeled by CA and, later,
aid the foundations for a Theory of Cellular Automata (Wolfram,
002), defined as discrete dynamic systems in which local inter-
ctions among components generate global changes in space and
ime. CA simulation was soon applied to physical sciences, nat-
ral sciences and mathematics. Tobler (1979) first proposed the
pplication of cellular space models to geographic modeling. In

he 1980s, the first theoretical approaches to CA-based models for
he simulation of urban expansion appeared (Batty and Xie, 1994;
ouclelis, 1985; White and Engelen, 1994). Itami (1994) reviewed
A theory and its application to the simulation of spatial dynamics,
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and Batty (2005b) provided an analysis of diverse applications of
urban CA.

Conceptual advances in CA research and the development of
computing power led to the emergence of the first operational
urban CA models applied to real-world urban systems in the
1990s. The ability of CA to simulate urban growth is based on
the assumption that past urban development affects future pat-
terns through local interactions among land uses. The interest of
CA-based models for urban simulation can be explained in terms
of the simplicity, flexibility, intuitiveness and transparency of CA.
Additionally, CA can be easily integrated with Geographical Infor-
mation Systems (Itami, 1994; Wagner, 1997) and, consequently,
model at high spatial resolution with computational efficiency.
Besides, many authors have shown that the nonlinearity of the
iterative process of CA leads to regular fractal patterns, i.e. to reg-
ular and ordered spatial patterns that generate similar geometries
at different scales. Such fractal structures, derived from complex
phenomena, are characteristic of urban developments (Batty, 1991;
Batty and Longley, 1994; Longley and Mesev, 2000).

When actually applying CA-based models to urban planning,
choosing the most suitable model from among the many options
available (Pinto and Antunes, 2007) is difficult (Li and Yeh, 2002a).
In order to present a structured overview that facilitates the choice

of a particular method for a given application problem, an analysis
of 33 urban CA models has been performed. The differences among
the different approaches are highlighted and a classification of the
models is proposed. The objective of this paper is to provide a basis
for a literature review of urban CA and for the future development
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f new advances in this area. To this end, the general characteris-
ics of urban CA are described and the different techniques used
n the design of such models are characterized and classified. Such
echniques have been summarized in several tables. In addition,
he strengths and weaknesses of the different models have been
dentified from the analysis and discussion of the characteristics of
he models.

. Relaxations of CA for urban simulation

A CA consists of a discrete cell space, in which states characterize
very cell. In urban CA, states can be (i) binary values (urban, non-
rban), (ii) qualitative values that represent different land uses, (iii)
uantitative values that represent, for example, population density
Li et al., 2003), degree of development (Yeh and Li, 2002) or the
alue of buildings (Cecchini and Rizzi, 2001), or (iv) a vector of sev-
ral attributes (Portugali and Benenson, 1995). The state of each cell
epends on its previous state and on the state of its neighboring
ells according to a set of transition rules. The ‘background con-
entions’ of CA limit their ability to realistically simulate complex
eographical phenomena (Couclelis, 1985). For this reason, adapt-
ng CA to urban simulation requires considering the particularities
f this phenomenon, which usually entails a relaxation of the origi-
al structure of CA in order to introduce more complexity in models
Couclelis, 1997). The most common modifications include:

1) Irregular cell space. Formal CA assume a cell space represented
by a regular grid usually composed of square cells, although
some authors have proposed using hexagonal cells in order to
obtain a more homogeneous neighborhood (Iovine et al., 2005).
Additionally, the cell space can consist of a three-dimensional
matrix that allows to represent growth in height of urban areas
(Semboloni, 2000). The regular grid space can be modified by
using irregular tessellations such as Voronoi polygons (Shi and
Pang, 2000) or graphs (O’Sullivan, 2001a,b). Irregular spatial
units may provide a more faithful representation of the objects
being modeled. For example, using cadastral parcels instead of
regular cells (Stevens and Dragicevic, 2007) provides a repre-
sentation that comes closer to reality. Yet, using cadastral units
complicates the definition of the neighborhood.

2) Non-uniform cell space. In standard CA, the cell space is homo-
geneous, i.e., all cells are identical and are characterized
exclusively by their state. However, land-use change depends
largely on other land attributes such as slope, elevation or acces-
sibility. Consequently, the cell space is not uniform, such that
some cells are more suitable for certain land uses.

3) Extended neighborhood. In strict CA, the neighborhood must be
the same for every cell and must be composed of the geo-
metrically closest set of cells (e.g. Moore and von Neumann
neighborhood). In urban systems, this local neighborhood must
be extended in order to consider the influence of neighboring
cells located at a certain distance. When the neighborhood is
extended, a distance-decay effect is usually introduced in the
model, such that the effect of a neighboring cell decreases with
the increase in distance between both cells. In spaces composed
of irregular units, the neighborhood can be defined as the adja-
cent units, as the units within a specified distance or using the
Voronoi spatial model (Shi and Pang, 2000).

4) Non-stationary neighborhood. The neighborhood space may be
defined differently for each cell. Such a relaxation is widely
acknowledged (Couclelis, 1985), but seldom implemented.

Models in which each cell receives a weight according to its
state and location within the neighborhood (e.g. White and
Engelen, 1993) allow for the application of neighborhoods of
different sizes and shapes by introducing weights equivalent to
zero.
Planning 96 (2010) 108–122 109

(5) More complex transition rules. The transition rules of a formal
CA consider solely the current state of the cell and its neigh-
bors. However, a variety of factors influence urban processes,
such as suitability for a land use, accessibility, socioeconomic
conditions, or urban planning. Consequently, urban CA are
not closed systems, as established by the CA formalism, since
urban CA models can consider external factors. The transition
rules of urban CA can be designed in many ways and reflect
various urban theories, based on microeconomic theories of
planning (Webster and Wu, 2001), centrality and potential
models (Polidori and Krafta, 2005), etc.

(6) Non-stationary transition rules. The transition rules of strict CA
are static, however the processes that govern land-use change
may vary over time and space. Therefore, it may be necessary to
adapt the transition rules to the specific characteristics of each
area and period. Spatial and temporal variation can be achieved
through calibration (Geertman et al., 2007; Li et al., 2008). The
most evident example of transition rules that vary over time
are the self-modification rules of SLEUTH (Clarke et al., 1997).
Phipps and Langlois (1997) proposed a system that modified
the transition rules at every time step according to changes in
configuration and external parameters.

(7) Growth constraints. In conventional CA the number of cells that
change state is endogenously defined by the application of tran-
sition rules. However, urban land demand is usually determined
by exogenous social, economic or environmental constraints,
such as demographic evolution or urban planning, which con-
strain overall urban growth.

(8) Irregular time steps. There are many urban CA in which different
cells may be subject to time steps of different lengths (Stevens
and Dragicevic, 2007). A less frequent relaxation is using vari-
able time steps (Couclelis, 1997) to simulate specific events of
different lengths of time. Cecchini and Rizzi (2001) suggested
applying two types of rules: structure rules, applied in every
iteration, and conjunctures rules, applied only when a specific
event was implemented.

3. Analysis of urban CA models

Early applications of CA to urban dynamics modeling were
theoretical models aimed at simulating simple urban structures.
Takeyama and Couclelis (1997) defined the language of geo-algebra
as the mathematical basis for the development of urban CA within
GIS. Theoretical developments were followed by the design of
abstract simulation models of urban evolution (Batty, 1998; Batty
and Xie, 1994, 1997; Batty et al., 1999; Semboloni, 1997). Such the-
oretical approaches allowed modelers to test hypotheses of urban
theories and simulate general urban forms (Batty, 2005a). Other
theoretical applications of CA to urban modeling are described
by Itami (1988), Portugali and Benenson (1995), Cecchini (1996),
Phipps and Langlois (1997), Wu and Webster (1998a), Webster and
Wu (1999a,b), Liu and Phinn (2003) and Kocabas and Dragicevic
(2006a). These theoretical models laid the foundations for the
development of operational urban CA, but were never tested in real
cities.

The next step was the application of the above theoretical mod-
els to the simulation of real-world urban development processes.
The emergence of GIS has contributed to the change from artifi-
cial applications to real simulations (Couclelis, 1997). This paper
focuses on models that have been applied to real cities and, in most

cases, have been subject to calibration and validation.

Some of the first applications of urban CA to the simulation
of real-world cases were carried out by Batty and Xie (1994) and
Xie (1996) in Amherst, New York. However, the first widespread
empirical application of these models was developed by White et
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Table 1
Main characteristics of urban CA models with strict transition rules.

Author Objectivea Cell space State CA relaxations Other methods Calibration Validation

Neighborhood Transition rule Constraintb

Besussi et al. (1998) P-M 30 m cells 18 land uses Moore Land value transformation automata:
modifies the value of residential cells
as a function of the residential and
commercial cells in the neighborhood
according to 6 rules. Urban functions’
transformation automata: modifies the
density of residential cells as a function
of the presence of commercial cells in
the neighborhood and vice versa
according to 4 rules. Urban functions’
diffusion automata: simulates the
change of residential, commercial,
industrial, and park cells according to 9
rules

No None None None

Jenerette and Wu
(2001)

D, P 250 and 75 m
cells

Urban, desert
parks

Moore The transition probability is based on
the number of urban neighbors and on
the state of the cell

No Genetic
algorithm (GA)

Empirical and GA Landscape
structure indices

Stevens and Dragicevic
(2007)

P-M Cadastral
parcels

7 land uses Adjacent
parcels

Residential use: the attractiveness of
the parcel for residential use is the sum
of the scores given for proximity to
parks, commercial areas, light industry
and heavy industry, and the score
given by adjacency to residential land.
If the adjacency score is higher than
the sum of the other four scores, all the
parcels adjacent to currently
developed parcels will begin to be
developed until the demanded area is
fully developed. Commercial use: if the
parcel is adjacent to a road, the
neighborhood has enough population
and the neighborhood is not saturated
with other developed commercial
properties, the cell is developed. Park
use: if the cell has a specified number
of people living in its neighborhood

POP None Empirical None

Ward et al. (2000) D 50 m cells Urban,
non-urban

Moore and von
Neumann

The state of a cell is urban if the cell is
not affected by constraints, if at least
one of the neighboring cells belongs to
the transportation network, if the
value of a random normal variable (u)
is higher than an intrinsic growth rate,
and if there is no directional bias in the
location of the cell in the neighborhood

POP Ward et al.
(2003) used linear
programming to
provide the urban
area

None Visual None

Yüzer (2004) P-M 100 m cells 5 land uses Square with a
radius of 6 cells

Transition potential is based on the
land uses of the neighborhood. The
mean of the potentials for transition is
calculated. The cells with a potential
higher than the product of the mean by
a coefficient change from one state to
another

AGR or POP None Surveys and
spatial studies

None

a D – descriptive; P – predictive; M – multiple land uses; PC – prescriptive.
b AGR – annual growth rate for urban land; POP – population growth projection; PLA – urban regulation planning; MOD – model mentioned in the ‘other methods’ section; OTH – other studies.
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Table 2
Main characteristics of urban CA models with transition rules based on transition potential or probability.

Author Objectivea Cell space States CA relaxations Other methods Calibration Validation

Neighborhood Transition rule (calculation of the
transition potential)

Constraintb

Almeida et al.
(2003)/Almeida et al.
(2005)

D-M 100 m cells 8 land uses Moore Complex function that includes the
weights of evidence for different
factors and the prior probability for
each land-use transition

AGR Weights of
evidence to
calculate
transition
probabilities

Test of indepen-
dence/visual

Multiple
resolution fitting
procedure

Barredo et al.
(2003)/Barredo et al.
(2004)

D-M, P-M 100 m cells 22 land uses, 9
active uses/8
active land uses

Circular with a
radius of 8 cells

Product of the accessibility, the
suitability for that use, the zoning
status for that use, a stochastic
disturbance parameter, and the effect
of the neighborhood

MOD/POP and AGR Dynamic global
model that
calculates the
area for every
land use/none

Visual Visual
comparison.
Fractal
dimension.
Coincidence
matrix and kappa
index./Other
spatial metrics
instead of the
fractal dimension

Caruso et al. (2005) D 250 and 500 m
cells

Residential,
agricultural

Moore, circular
with radius of 3
and 5 cells

Complex function that includes the
income of households (constant), the
commuting cost, the social and
environmental externalities, and the
utility level to achieve (constant)

AGR None Sensitivity
analysis

Fragmentation
index:
HF-edge-share.
Fractal dimension
and curve.
Residential
density vs.
distance

Cheng and Masser
(2004)

D, P 10 m cells Urban,
non-urban

Circular with a
radius of 3–9
cells

Product of a stochastic disturbance
term, the weighted sum of a set of
factors, and a series of constraints

AGR None Empirical Coincidence
matrix.
Consistency
coefficients and
Lee–Sallee index

Engelen et al. (1999) D-M, P-M 100 m cells 14 land uses, 8
active uses

Circular with a
radius of 8 cells

Product of a stochastic disturbance
term, the suitability for the land use,
the zoning for that use, and the effect
of neighborhood

OTH None Sensitivity
analysis

Kappa index

He et al. (2006) D, P 180 m cells Urban,
non-urban

Not explicit Weighted sum of a set of factors, the
neighborhood effect, and an inertia
constant. The result is multiplied by a
stochastic disturbance term, and by
environmental and planning
constraints

MOD System
dynamics-
based model
that calculates
the urban area

Monte-Carlo
approach

Kappa index

He et al. (2008) D, P 180 m cells Urban,
non-urban

Circular with a
radius of 5 cells

The model of He et al. (2006), with the
exception that the inertia constant is
replaced by the urban expansion
potential

AGR and POP Linear
regression to
calculate urban
area. Potential
model to define
the rules

Monte-Carlo
approach

Kappa index

Lau and Kam (2005) D-M 1 km cells 9 land uses, 6
active uses

Moore Complex function of three indices:
attribute, heterogeneity and gravity.
The attribute effect comprises
accessibility, residential density,
property value and travel demand. The
heterogeneity index is calculated from
land-use data of the center cell. The
gravity effect is the resistance to
change. The result is multiplied by the
suitability for the land use

PLA Multivariate
statistical tools
to identify
factors and
weights

MANOVA and
MDA

Overall accuracy
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Table 2 (Continued)

Author Objectivea Cell space States CA relaxations Other methods Calibration Validation

Neighborhood Transition rule (calculation of the
transition potential)

Constraintb

Li and Yeh (2000)/Li
and Yeh (2002b)/Yeh
and Li (2002)/Yeh
and Li (2001)

PC 50 m cells Degree of
development
of a cell

Circular with a
radius of 2 cells

The product of the neighborhood effect
and the constraint score determines the
additional ‘grey’ state, which is added to
the previous ‘grey’ state to calculate the
‘grey’ state. The state of a cell will be:
developed if the ‘grey’ state of the cell is
1, partially developed if the ‘grey state’ is
between 0 and 1, and the previous state
is the ‘grey state’ is 0./In Li and Yeh
(2002b), the additional ‘grey’ state is the
product of the stochastic disturbance
term, the neighborhood effect, and a
function of the distance from the cell to
the ‘ideal point’, where this distance is
based on the attributes in the principal
component space./In Yeh and Li (2002),
the additional ‘grey’ state is calculated by
a more complex function which involves
the neighborhood effect, a constraint
function for the hierarchy of a major
center and subcenters, and a nonlinear
transformation of different weighted
factors./Yeh and Li (2001) use the same
function as Yeh and Li (2002) but
multiplying the result by a stochastic
variable

MOD/AGR/POP/AGR‘Equity model’
to determine
the optimal
urban area/PCA
to determine
the
factors/distance-
decay functions
to estimate
population
density/indices
of
sustainability
for validation

Sensitivity
analysis

Compactness index.
Suitability
loss./None./Population
density, compactness
and loss of
agricultural
land./Fractal
dimension.
Sustainability indices

Li et al. (2008) D, PC Not explicit Urban,
non-urban

Not explicit The logistic form of the model built by
Wu and Webster (1998b), and further
developed in Wu (2002)

Not explicit GA for
calibration

GA Shape index, fractal
dimension, nearest
neighbor, aggregation
index

Sui and Zeng (2001) D, P 180 m cells Urban,
non-urban

Von Neumann Weighted sum of the elevation, the
slope, the accessibility, the neighborhood
index, the shape index and an error term

AGR-MOD Logistic
regressions to
determine
weights and
urban area

Multiple
regression

Locational errors.
Spatial metrics

White and Engelen
(2000)

D-M, P-M 500 m cells 16 land uses Circular with a
radius of 8 cells

Product of a stochastic disturbance term,
the accessibility to the transportation
network, the suitability for the land use,
the zoning status for the land use and the
neighborhood effect, and adding an
inertia effect

MOD Regional model
that calculates
the area for
each land use

None None

White et al. (1997) D-M, P-M 250 m cells 6 land uses, 3
active uses

Circular with a
radius of 6 cells

The model of White and Engelen (2000)
but without using the zoning status for
the land use

AGR None Empirical Visual comparison.
Coincidence matrix
and kappa index.
Fractal dimension

Wu (1998b, 2002); Wu
and Martin (2002);
Wu and Webster
(1998b)

D and P 200 m cells,
except in Wu
(2002), with
30 m cells

Urban,
non-urban

Moore Complex function that includes a
stochastic parameter and a suitability
score. The suitability score is the
weighted sum of the scores for different
factors, one of which is the neighborhood
effect

AGR, except for
Wu and Martin
(2002): POP

Wu (1998b),
Wu and
Webster
(1998b): AHP
to determine
weights. Wu
(2002): logistic
regression to
determine
weights.

Wu (1998b), Wu
and Webster
(1998b):
sensitivity
analysis. Wu
(2002): logistic
regression

Wu (2002): overall
accuracy, Moran’s I
index, development
profile. Wu and
Martin (2002):
development profile.
Wu and Webster
(1998b): visual,
development profile,
coincidence matrix

a D – descriptive; P – predictive; M – multiple land uses; PC – prescriptive.
b AGR – annual growth rate for urban land; POP – population growth projection; PLA – urban regulation planning; MOD – model mentioned in the ‘other methods’ section; OTH – other studies.
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l. (1997), based on the previous models of White and Engelen
1993, 1997), which calculated for every cell the potential for tran-
ition to different land uses as a function of the neighborhood, the
uitability for each land use, an inertia effect, and a stochastic dis-
urbance term. A number of models based on this type of transition
otential were applied to the Island of St. Lucia (Engelen et al.,
995), Cincinnati (White et al., 1997), the IJmond/Kennemerland
egion of Holland (Engelen et al., 1999), The Netherlands (White
nd Engelen, 2000), Dublin (Barredo et al., 2003), Lagos (Barredo
t al., 2004) and San Diego (Kocabas and Dragicevic, 2006b). These
tudies confirmed the possibility of achieving highly realistic pre-
ictions of urban evolution using CA-based models. This type of
odels were improved by Arai and Akiyama (2004), who used dis-

riminant analysis to facilitate their calibration, and Caruso et al.
2005), who incorporated an urban economic model to reinforce
heir theoretical basis.

Another widespread model is SLEUTH, developed by Clarke et
l. (1997) to simulate urban dynamics in San Francisco and further
pplied to other regions in North America (e.g. Clarke and Gaydos,
998; Yang and Lo, 2003; Herold et al., 2003), Europe (Silva and
larke, 2002), South America (Leao et al., 2004) and Asia (Mahiny
nd Gholamalifard, 2007).

The models of Wu (1998b, 2002), Wu and Webster (1998b) and
u and Martin (2002) focused on the calculation of the develop-
ent probability for every cell according to a number of factors,

uch as the neighborhood. The first urban CA models developed
y Li and Yeh (2000, 2002b) and Yeh and Li (2001, 2002) were
ased on grey cells, which represented the cumulative degree of
evelopment, and focused on finding feasible alternatives for the
lanning of sustainable development. More recently, these authors
ave focused on defining transition rules using artificial intelligence
ethods. DINAMICA (Soares-Filho et al., 2002) is a CA-based model

riginally designed for the simulation of deforestation processes
hat was later applied to urban processes (Almeida et al., 2003,
005).

The analysis of the most relevant characteristics of these and
ther CA-based models has allowed us to group and characterize
he models. The main characteristics of these urban CA are summa-
ized as follows:

1) Transition rules. The relaxations allowed in CA to more realis-
tically simulate urban growth have led to the emergence of a
large variety of rules. To facilitate analysis, transition rules have
been classified into six types. Yet, some rules can be included
in several groups.

Type-I rules are strictly orthodox transition rules, in the sense
hat the state of a cell is a function of the cell’s current state and
he state of its neighbors, which can be implemented by means of
imple rules, based exclusively on the number of neighboring cells
f each land use (Jenerette and Wu, 2001; Yüzer, 2004), or of more
omplex rules (Besussi et al., 1998; Stevens and Dragicevic, 2007;

ard et al., 2000) (Table 1).
Type-II rules. In type-II rules, the key driver of urban evolution is

he transition potential, i.e. the probability that each cell changes
o a specific land use, which is a function of the current land use of
he cell and its neighbors (CA component), and of other factors that
onstrain land-use evolution.

White and Engelen were the first to propose the calculation of
ransition potentials (Engelen et al., 1999; White et al., 1997). The

odels designed by Wu (1998b, 2002), Wu and Martin (2002) and

u and Webster (1998b) determined the probability of develop-
ent as a function of a number of factors, such as neighborhood.

hese factors are not preset, which allows modelers to introduce
he most suitable factors for each specific application. The same
pplies to the models developed by Almeida et al. (2003, 2005),
Planning 96 (2010) 108–122 113

Cheng and Masser (2004) and He et al. (2006, 2008). Conversely,
the models proposed by Lau and Kam (2005), Sui and Zeng (2001)
and White and Engelen (2000) used preset factors. Yet, the mod-
els by White and Engelen (2000) and Lau and Kam (2005) allowed
for the incorporation of the desired factors in the calculation of the
suitability or of the attribute effect respectively.

The transition potential is usually calculated as the weighted
sum or product of a number of factors (Table 2), among which
the effect of neighborhood stands out. In addition, a stochastic
disturbance parameter is commonly used to model the uncer-
tainty associated with urban processes. These models may include
a series of constraints that take the value 0 if a cell cannot be devel-
oped or 1 otherwise. When the transition potential is calculated
as a weighted sum, different techniques can be used to determine
the weights, such as logistic regression (Sui and Zeng, 2001; Wu,
2002) or multicriteria evaluation (Wu, 1998b; Wu and Webster,
1998b).

In other models, the transition potential is calculated using more
complex functions. For example, Wu (1998b) uses an exponential
function justified because the sites with higher scores are more
likely to be developed. Such complex functions are usually based
on statistical or urban theories. The first group includes the mod-
els of Almeida et al. (2003), in which the transition probability is
based on the weights of evidence for different factors; Li and Yeh
(2002b), which uses Principal Components Analysis (PCA) to define
the factors of the transition rule; and Lau and Kam (2005), which
uses statistical tools to identify the factors to form the attribute and
heterogeneity effects.

The second group includes the models of Caruso et al. (2005),
based on urban economics, which allows, according to the authors,
a further understanding of urban processes; He et al. (2008), which
uses a potential model to calculate the urban expansion potential by
taking into account the effect of the spatial distribution of capital
and population; and Yeh and Li (2002), which incorporates den-
sity and constraint functions to simulate different types of urban
forms.

Type-III rules. These transition rules are based on urban shape
and form for the reproduction of the spatial patterns of urban
growth (Table 3). An example of type-III rules is found in SLEUTH,
a pattern-extrapolation model that considers four types of urban
growth: spontaneous growth, new spreading center growth, edge
growth and road-influenced growth. The model proposed by Li et
al. (2003) is based on urban shape to the extent that it is based on
the assimilation of the spatial appearance of urban expansion to a
physical diffusion process. The DINAMICA model can be included in
type-III rules because, from among the cells with the highest proba-
bilities, some cells are chosen using two functions, which are aimed
at spatially simulating urban growth: the Expander function, which
expands or contracts the existing patches and the Patcher function,
which generates new patches.

Type-IV rules. Type-IV rules use artificial intelligence methods
(Table 4) such as neural networks, kernel-based learning meth-
ods, or Case-Based Reasoning (CBR), which are learning algorithms
aimed at recognizing complex patterns based on data, or data min-
ing methods, which automatically reconstruct explicit transition
rules.

Type-V rules. Type-V rules are based on fuzzy logic, which allows
the uncertainty of human behavior to be included in the simulation
and the definition of transition rules through a natural language
(Table 5).

Type-VI rules. Type-VI rules include transition rules that cannot

be grouped into a general method (Table 6). These models are based
on simple rules, defined through conditional logical operations. By
contrast, the model developed by Xie (1996) is more complex inso-
far as it defines a general scheme on which multiple models can be
built.



114 I. Santé et al. / Landscape and Urban
Ta

b
le

3
M

ai
n

ch
ar

ac
te

ri
st

ic
s

of
u

rb
an

C
A

m
od

el
s

w
it

h
tr

an
si

ti
on

ru
le

s
ba

se
d

on
u

rb
an

sh
ap

e
an

d
fo

rm
.

A
u

th
or

O
bj

ec
ti

ve
a

C
el

ls
p

ac
e

St
at

es
C

A
re

la
xa

ti
on

s
O

th
er

m
et

h
od

s
C

al
ib

ra
ti

on
V

al
id

at
io

n

N
ei

gh
bo

rh
oo

d
Tr

an
si

ti
on

ru
le

C
on

st
ra

in
tb

C
la

rk
e

et
al

.
(1

99
7)

/C
la

rk
e

an
d

G
ay

d
os

(1
99

8)

D
,P

30
0

m
ce

ll
s/

21
0

m
ce

ll
s

U
rb

an
,

n
on

-u
rb

an
M

oo
re

4
ty

p
es

of
gr

ow
th

ru
le

s:
sp

on
ta

n
eo

u
s,

d
if

fu
si

ve
,o

rg
an

ic
,a

n
d

ro
ad

-i
n

fl
u

en
ce

d
gr

ow
th

,c
on

tr
ol

le
d

by
5

fa
ct

or
s

(a
d

if
fu

si
on

fa
ct

or
,a

br
ee

d
co

ef
fi

ci
en

t,
a

sp
re

ad
co

ef
fi

ci
en

t,
a

ro
ad

-g
ra

vi
ty

fa
ct

or
an

d
a

sl
op

e
re

si
st

an
ce

fa
ct

or
).

Se
lf

-m
od

ifi
ca

ti
on

ru
le

s:
at

th
e

en
d

of
ea

ch
ti

m
e

p
er

io
d

,t
h

es
e

fa
ct

or
s

ar
e

ad
ju

st
ed

if
th

e
gr

ow
th

ra
te

is
ab

ov
e

or
be

lo
w

a
th

re
sh

ol
d

N
o

N
on

e
Si

m
u

la
ti

on
u

si
n

g
co

m
bi

n
at

io
n

s
of

p
ar

am
et

er
va

lu
es

in
th

re
e

p
h

as
es

(c
oa

rs
e,

m
ed

iu
m

,
an

d
fi

n
e)

12
sp

at
ia

lm
et

ri
cs

Li
et

al
.(

20
03

)
PC

20
0

m
ce

ll
s

U
rb

an
,

n
on

-u
rb

an
M

oo
re

Th
e

st
at

e
of

a
ce

ll
w

il
lb

e
u

rb
an

if
th

e
p

op
u

la
ti

on
d

en
si

ty
fo

r
th

at
ce

ll
is

h
ig

h
er

th
an

a
p

re
se

t
d

en
si

ty
va

lu
e.

Th
e

p
op

u
la

ti
on

d
en

si
ty

is
ca

lc
u

la
te

d
by

ad
d

in
g

to
th

e
p

re
vi

ou
s

d
en

si
ty

th
e

d
en

si
ty

in
cr

ea
se

m
u

lt
ip

li
ed

by
a

d
if

fu
si

on
co

ef
fi

ci
en

t.
Th

e
d

en
si

ty
in

cr
ea

se
is

th
e

w
ei

gh
te

d
su

m
of

th
e

d
if

fe
re

n
ce

s
be

tw
ee

n
th

e
d

en
si

ty
of

th
e

n
ei

gh
bo

ri
n

g
ce

ll
s

an
d

th
e

d
en

si
ty

of
th

e
ce

ll

PO
P

N
on

e
Se

n
si

ti
vi

ty
an

al
ys

is
N

on
e

a
D

–
d

es
cr

ip
ti

ve
;

P
–

p
re

d
ic

ti
ve

;
M

–
m

u
lt

ip
le

la
n

d
u

se
s;

PC
–

p
re

sc
ri

p
ti

ve
.

b
A

G
R

–
an

n
u

al
gr

ow
th

ra
te

fo
r

u
rb

an
la

n
d

;
PO

P
–

p
op

u
la

ti
on

gr
ow

th
p

ro
je

ct
io

n
;

PL
A

–
u

rb
an

re
gu

la
ti

on
p

la
n

n
in

g;
M

O
D

–
m

od
el

m
en

ti
on

ed
in

th
e

‘o
th

er
m

et
h

od
s’

se
ct

io
n

;
O

TH
–

ot
h

er
st

u
d

ie
s.
Planning 96 (2010) 108–122

Alternatively, transition rules can be classified into rules that
include a stochastic component and deterministic rules. The
stochastic component can be introduced by using: (i) a Monte-Carlo
method that compares the transition probability with a random
number, such that the cell will change state if its probability is
higher than the random number, and (ii) a stochastic disturbance
term � defined as: � = 1 + [−ln(rand)˛], where 0 < rand < 1 is a ran-
dom variable and ˛ is a parameter that allows to adjust the size
of the disturbance. A consequence of stochastic implementation is
that the model can produce different results every time the model
is run. This problem can be overcome by using a Monte-Carlo simu-
lation to obtain spatial probability distributions (Ward et al., 2003;
Yeh and Li, 2006).

Despite the large variety of transition rules, the factors that influ-
ence such rules are usually repeated. Most of the models shown
in Table 7 include road accessibility (81%) and distance to urban
centers (50%). Next in frequency are slope and accessibility to rail-
way, followed by planning and environmental factors, suitability
for development and population density.

(2) Objective. According to their objective, CA-based models can
be classified into three categories: descriptive models, which
analyze the factors and dynamics that govern the evolution of
urban land; predictive models, which simulate land-use change
in a near future; and prescriptive models, aimed at obtaining the
optimal configuration of land uses. Most of the analyzed models
are calibrated to simulate the dynamics observed, and some
models are further applied to predict future developments.

(3) Cell space. All the models use a cell-space composed of square
cells of different resolutions (of 10 m to 1 km), except for the
model developed by Stevens and Dragicevic (2007), with an
irregular cell-space composed of cadastral parcels. Ménard and
Marceau (2005) and Samat (2006) demonstrated the sensitivity
of geographic CA to cell size and highlighted the importance of
adjusting cell size to the objects that compose the landscape.

(4) Cell states. Most models simulate transitions from non-urban
to urban land uses, but some models extend these transitions
to multiple land uses. White et al. (1997) make a distinc-
tion between fixed land uses, which affect transitions but
remain stable, and functions, which can change to another state.
Barredo et al. (2004) identifies two types of functions: active
functions (urban uses) and passive functions.

(5) Neighborhood. Less than half of the analyzed models use the
local neighborhood of strict CA. The Moore neighborhood is the
most frequent neighborhood. The rest of the models extend the
neighborhood space to a radius of 2–9 cells in order to consider
distance effects. Kocabas and Dragicevic (2006b) have demon-
strated that neighborhood size and type significantly affect the
model outcomes.

(6) Growth constraint. The total land area that changes from its cur-
rent land use to another land use is endogenously generated by
the CA only in seven models. In the rest of the models, this area
is determined by an external constraint that can be obtained in
a variety of ways: (i) by extrapolating the urban growth rate of
previous historical periods or predicting population evolution,
(ii) by integrating the CA with other models, (iii) by calculating
a dynamic growth rate that varies at each time step as a func-
tion of the characteristics of urban growth, and (iv) according
to urban planning guidelines.

(7) Integration with other models. Many authors have suggested the
integration of CA with other modeling techniques to improve

the application of CA to real-world processes. Such techniques
are commonly used to calculate growth constraints, to define
transition rules or to calibrate the model.

(8) Calibration. The aim of calibration is to obtain the values of
the transition rule parameters that allow for the most accu-
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Table 4
Main characteristics of urban CA models with transition rules based on artificial intelligence.

Author Objectivea Cell space States CA relaxations Other methods Calibration Validation

Neighborhood Transition rule Constraintb

Li and Liu (2006) D Not explicit Urban,
non-urban

Not explicit The development probability of a cell is
the product of the number of
developed cells in the neighborhood,
the constraint factor and the k-NN
algorithm of Case-based Reasoning
(CBR)

AGR CBR for the
definition of
the transition
rules

Sensitivity
analysis. CBR

Visual
comparison.
Coincidence
matrix Moran’s I
index.
Comparisons
with other
models

Li and Yeh (2001)/Li
and Yeh (2002a)/Yeh
and Li (2003)

D, P/D-M, P-M/PC 50 m cells Urban,
non-urban/6
land
uses/Urban,
non-urban

Square of 7 × 7
cells

A neural network provides the
probability of development for each
cell based on the number of developed
cells in the neighborhood and other
cell attributes./The network provides
the probability of conversion from
each land use to another land use./The
same as in Li and Yeh (2001)

AGR Neural network
for calibration
and prediction

Neural network
training

Error matrix and
overall accuracy

Li and Yeh (2004) D, P 30 m cells Urban,
non-urban

Square of 7 × 7
cells

Explicit transition rules (expert
system) are defined using a data
mining technique based on the
information gain ratio. A heuristic rule
is added, such that the area that
changes state in each time step adjusts
to the growth observed during that
period

AGR Data mining for
definition of
rules and
calibration

Data mining Overall accuracy.
Visual
comparison.
Moran’s I index

Liu et al. (2008a) D, P Not explicit Urban,
non-urban

Moore Definition of explicit transition rules
using a data mining technique based
on an ant colony optimization
algorithm. A heuristic rule is added,
such that the area that changes state in
each time step adjusts to the growth
observed during that period

AGR Ant colony
optimization
algorithm for
definition and
calibration of
rules

Ant colony
optimization
algorithm

Visual.
Coincidence
matrix. Moran’s I
index. Other
spatial indices.
Comparison with
null model

Liu et al. (2008b) D 50 m cells Urban,
non-urban

Moore The development probability is the
product of the total score of the
constraints, the percentage of
urbanized cells in the neighborhood
and a logistic model in which the
kernel Fisher discriminant (KFD)
function (kernel-based learning
technique) is introduced

AGR KFD and
logistic
regression to
define the
transition rules

Empirical Visual. Confusion
matrix. Overall
accuracy and k
index. Spatial
indices.
Comparison with
neural network
and logistic
regression

Yang et al. (2008) D, P 30 m cells Urban,
non-urban

Moore The development probability is the
product of the stochastic variable, the
constraint factors, the number of urban
cells in the neighborhood, and the
Support Vector Machines (SVM)
optimization function (kernel-based
learning technique)

AGR SVM for the
definition of
the transition
rules

Empirical Visual
comparison.
Coincidence
matrices. Overall
accuracy. Kappa
index.
Comparison with
other model

a D – descriptive; P – predictive; M – multiple land uses; PC – prescriptive.
b AGR – annual growth rate for urban land; POP – population growth projection; PLA – urban regulation planning; MOD – model mentioned in the ‘other methods’ section; OTH – other studies.
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Table 5
Main characteristics of urban CA models with transition rules based on fuzzy logic.

Author Objectivea Cell space States CA relaxations Other methods Calibration Validation

Neighborhood Transition rule Constraintb

Al-Ahmadi et al. (2009) D 20 m cells Urban,
non-urban

Is calibrated The development probability is the
product of the stochastic disturbance
variable and the development
suitability. The development suitability
is a fuzzy function of a set of factors

AGR Fuzzy logic for
rule definition.
GA and
simulated
annealing for
calibration

GA and simulated
annealing

Visual
comparison.
Coincidence
matrix. Overall
accuracy.
Lee–Sallee index.
Spatial Pattern
Measure

Al-kheder et al. (2008) D-M, P-M 60 m cells 3 land uses Moore Development potential is calculated by
combining a set of fuzzy variables. The
fuzzy value of the development
potential is defuzzified and related to
the number of developed cells (y*)
required in the neighborhood. The
transition rules are defined in each
case using y* as input value

No Fuzzy logic for
the definition
of rules

Sensitivity
analysis

Ratio of number
of urban cells in
the simulated and
the real maps.
Type-I and
Type-II errors

Wu (1996, 1998a) PC-M 28.5 m cells 5 land uses Square of 5 × 5
cells

The initial state of a cell decides which
instructions to invoke. Such
instructions depend on a number of
indicators, calculated from the number
of cells of each land use in the
neighborhood. These indicators are
fuzzified by applying a membership
function and then defuzzified using the
maximum method, such that each cell
is assigned the land use that
corresponds to the instruction for
which the cell shows the highest grade
of membership

No Fuzzy logic for
the definition
of rules

Modification of
membership
functions to
simulate
different
scenarios

Assessment of
scenarios

a D – descriptive; P – predictive; M – multiple land uses; PC – prescriptive.
b AGR – annual growth rate for urban land; POP – population growth projection; PLA – urban regulation planning; MOD – model mentioned in the ‘other methods’ section; OTH – other studies.
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rate reproduction of the past evolution of land uses. There are
two traditional methods to calibrate CA-based models: meth-
ods based on trial and error and methods based on statistical
techniques. The first ones do not require strict mathematical
formulation and include the assessment of the results obtained
from alternative combinations of parameter values (Ward et
al., 2000), the sequential multistage optimization by automated
exploration of combinations of parameters (Silva and Clarke,
2002), the manual tuning of the parameters through interac-
tive graphs (Barredo et al., 2004) or the adaptive Monte-Carlo
approach (He et al., 2008). This type of calibration requires that
the model is run many times, so it is computationally inten-
sive insofar as calculation time increases exponentially with the
number of parameters. The most frequent statistical method is
logistic regression, which intuitively provides the weights of
the variables involved. However, logistic regression is based on
mathematical equations that are sometimes unable to capture
the complexity of the relationships.

To overcome these drawbacks, more elaborate empirical cali-
ration methods were developed (Straatman et al., 2004). However,
hese methods are inapplicable to models of considerable size. For
his reason, in recent years, a number of authors have studied the
pplication of more efficient heuristic methods such as genetic
lgorithms (e.g., Jenerette and Wu, 2001; Li et al., 2008; Shan et
l., 2008) or simulated annealing (Al-Ahmadi et al., 2009). Almeida
t al. (2008) used a neural network to calibrate DINAMICA. In mod-
ls that use artificial intelligence techniques to define the transition
ules, the design and calibration of the rules occur simultaneously.

9) Validation. The most simple validation method consists in the
visual assessment of modeled and real maps, and is usually
complemented by quantitative methods that evaluate overall
accuracy. For this purpose, the most frequent metrics in increas-
ing order of complexity are (i) ratio of simulated to real number
of cells (or clusters) for a given land use, (ii) overall accuracy,
i.e. the percentage of correctly classified pixels, (iii) regression
analysis between simulation results and real data, and (iv) con-
fusion matrix and kappa index.

However, the likelihood that a simulation algorithm matches
he exact spatial location of land-use change is very low and even
ot necessary (Jantz and Goetz, 2005). Given that the aim of these
odels is to generate urban morphologies similar to real morpholo-

ies and to analyze the factors that generate the various urban
atterns, the results must be analyzed in terms of spatial structure.
attern based map comparison techniques include: (i) profiles of
evelopment as a function of physical distance or travel time to city
enter, (ii) a great variety of spatial metrics, among which the most
requent are Moran’s I and shape indices, the number or density of
dges, the patch number, the mean patch area, the mean nearest
eighbor, and the contagion and Lee–Sallee indices, (iii) different

ractal measures, and (iv) the multiple resolution fitting procedure
Costanza, 1989).

Moreover, a CA-based model can be validated by comparing the
utput of the model with the output of another model or with a null
odel. Generally, the validation method used is dependent upon

he aims of the simulation. In fact, in prescriptive models that search
ptimal solutions, validation consists in assessing the quality of the
cenarios obtained.
. Strengths and weaknesses of urban CA models

Because all the models have advantages and disadvantages,
ome of the most relevant aspects of urban CA models have been Ta

b
le

6
M

ai
n

ch
ar

ac
te

ri

A
u

th
or

D
ea

d
m

an
et

a

Sh
an

et
al

.(
20

X
ie

(1
99

6)

a
D

–
d

es
cr

ip
t

b
A

G
R

–
an

n
u



118
I.Santé

et
al./Landscape

and
U

rban
Planning

96 (2010) 108–122

Table 7
Factors used together with neighborhood effect to model the evolution of urban land. * - the factor indicated by the column is used by the authors indicated by the row to model urban growth.

Distance to
roads/
accessibility/ no.
of travels/travel
time

Distance to
railway

Distance
to airport

Distance to
urban centers

Social
services

Slope Elevation Environmental
factors

Hazard
lands

Agricultural
value/soil
type

Urban
suitabil-
ity

Zoning Population
density

Land
value

Construction
year

Water
sup-
ply

Social
housing

Al-Ahmadi et al.
(2009)

* * * * *

Al-kheder et al.
(2008)

* * * *

Almeida et al. (2003,
2005)

* * * * *

Barredo et al. (2003,
2004)

* * *

Caruso et al. (2005) * * *
Cheng and Masser

(2004)
* * * *

Clarke et al. (1997) * * * *
Deadman et al.

(1993)
* * *

Engelen et al. (1999) * *
He et al. (2006) * * * * * *
He et al. (2008) * * * * * * *
Lau and Kam (2005) * * * * *
Li and Yeh (2000) *
Li and Yeh (2001) and

Yeh and Li (2003)
* * * *

Li and Yeh (2002a) * * * *
Li and Yeh (2002b) * * * *
Li and Yeh (2004) * * * * *
Li et al. (2003) *
Li et al. (2008) * * *
Liu et al. (2008a) * * * *
Liu et al. (2008b) * * * * * *
Shan et al. (2008) *
Sui and Zeng (2001) * * * *
White and Engelen

(2000)
* * *

White et al. (1997) * *
Wu (1998b, 2002) * * *
Wu and Martin

(2002)
* * *

Wu and Webster
(1998b)

* * * * *

Xie (1996) * * *
Yang et al. (2008) * * *
Yeh and Li (2001,

2002)
* *



Urban

a
d
s

4

l
e
t
a
Y
p
c
p
e
d
h
m
C
a
s
a
e

b
p
o
f

4

r
t
u

m
c
l
o
t
t
t
s
e
o
c
c

s
r
m
r
i
e
p
t
p
m

p
H
i
t
u

I. Santé et al. / Landscape and

nalyzed separately, such that the choice of a particular model will
epend on the characteristics that are most interesting for each
pecific situation.

.1. Balance between realism and preservation of CA features

The relaxations of the original scheme of CA may lead to the
oss of the fundamental characteristics of simplicity and locality, or
ven to models in which the CA component is no longer the core of
he model. Except for the models developed by Besussi et al. (1998)
nd Jenerette and Wu (2001), most models show some relaxation.
et, some models present more important modifications. For exam-
le, in the neural network proposed by Li and Yeh (2001), the CA
omponent is present exclusively in the network input variables
ertaining to the distance from a cell to each land use. In this model,
ven the application of the only concept that is essential to the
efinition of a model as a CA-based model, namely, the neighbor-
ood concept, is quite vague. Almeida et al. (2003) defined their
odel as a cell-space model rather than a CA model because the

A component was quite hidden. In Li and Yeh (2004) and Liu et
l. (2008a), the neighborhood function was only one of the nine
patial variables used to define the transition rules, whereas in Li
nd Liu (2006) and Deadman et al. (1993), neighborhood was not
xplicitly addressed.

A possible solution to the problem of achieving a balance
etween realism and simplicity is the multi-cellular automaton
roposed by Cecchini and Rinaldi (1999), which consists in an
rdered sequence of CA sub-models, such that every single CA con-
orms to the orthodox formulation (Besussi et al., 1998).

.2. Flexibility

Flexibility is the ability of the model to adapt to different
eal-world urban situations and depends on the flexibility of the
ransition rules, on the factors considered in such rules, on the land
ses modeled and on neighborhood adaptability.

With regard to transition rules, the most flexible models are the
odels that propose a general scheme within which multiple spe-

ific models can be defined (e.g. Xie, 1996; Besussi et al., 1998). The
east flexible models are the models that use neural networks, CBR
r data mining, in which rule definition and calibration are simul-
aneous, such that the resulting transition rules are closely adapted
o local conditions. Consequently, these models are not suited
o define general urban CA, but rather a methodology to define
pecific models for each situation. Most of the rest of the mod-
ls show intermediate flexibility because they are based on more
r less general rules that are adjusted to every situation through
alibration. The adaptability of the model largely depends on
alibration.

With regard to the factors included in the transition rules, using
trict rules limits the ability of the model to represent different
eal-world urban situations. For type-II rules, a distinction has been
ade between rules that include specific factors and more flexible

ules that allow for the use of any factor. Models that use artificial
ntelligence techniques are flexible in terms of the factors consid-
red, as opposed to models based on urban shape and form. In
rinciple, CA-based models based on fuzzy logic allow modelers
o consider an indefinite number of factors. However, in practice,
roblems arise when a large number of factors are included in such
odels.
With regard to land uses, simulating the evolution of multi-
le land uses is far more complex than simulating urban growth.
owever, Dietzel and Clarke (2006) demonstrated that models that

nclude only urban/non-urban data oversimplify the dynamics of
he system because of the strong link between the likelihood of
rbanization and the type of land use that will be converted to
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urban. Yet, only 13 out of the 33 models reviewed in this paper
consider multiple land uses.

With respect to neighborhood, only a few models provide the
possibility of applying different types of neighborhood. Only the
model developed by Stevens and Dragicevic (2007) considered
adjacent parcels or parcels located at a specified distance depending
on each land use. Xie (1996) considered three types of neighbor-
hood, whereas Ward et al. (2000) used a local neighborhood and
a wider one. In the models proposed by White and Engelen, the
size and shape of the neighborhood can be adjusted, and different
neighborhoods can be applied to different uses by setting weights
equal to zero from a certain distance, in some cells or for certain
uses. In Al-Ahmadi et al. (2009), neighborhood size is one of the
parameters defined during calibration. Other models were tested
using several neighborhoods, but in different simulations.

Most models have been tested only for the regions for which
they have been designed. Examples of the adaptability of urban CA
models to the local characteristics of very different regions can be
found only for the most widespread models, among which SLEUTH
and the family of models designed by White and Engelen.

4.3. Explanatory power

There are descriptive and explanatory models. Descriptive mod-
els tell us what is happening, but not why. For example, the
transition rules of SLEUTH do not allow for the analysis of the causes
of the spatial patterns generated. In the neural network of Li and Yeh
(2001), knowing the weight of each variable in the final output and,
consequently, explaining the origin of the simulated phenomenon
are not possible. Something similar happens in the model of Li and
Liu (2006). However, this limitation does not affect the ability of the
model to predict urban growth or to solve ‘what if’-type questions.

At the opposite end of a black-box approach are explicit transi-
tion rules obtained using data mining techniques or fuzzy inference,
which are transparent and easily understood by decision-makers.
However, explicit rules have difficulties in representing very com-
plex relationships and the choice of fuzzy functions is subjective
and largely influences the results.

An intermediate approach uses models based on mathematical
equations that provide information about the causes of the pro-
cess but are less intuitive than explicit rules, and can manage more
complex relationships than explicit rules but show more limita-
tions than artificial intelligence techniques to simulate nonlinear
complex systems.

Generally, the main advantage of descriptive models, particu-
larly of models based on informing theories (e.g. Wu and Webster,
1998a), is their ability to explore and validate hypothetical ideas
related to urban dynamics (Torrens and O’Sullivan, 2001). Yet, only
a few urban CA models applied to real-world processes are based
on well-developed theoretical models (e.g. Caruso et al., 2005; He
et al., 2008).

4.4. Data requirements

Data requirements depend upon the factors considered in the
model, so are usually in opposition to flexibility: the only input
required for strict rules are land-use maps, whereas in rules of types
II, IV and V, input data vary greatly.

4.5. Software availability
Most of the models reviewed use the geographic informa-
tion management capabilities of standard GIS, and program
the models using general programming languages or macro-
languages. In both cases, modelers need programming knowledge
to implement the models, which makes their diffusion dif-
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Table 8
Overall accuracy and kappa index of the results of various models.

Overall accuracy (%) Kappa index

Al-Ahmadi et al. (2009) 92–94
Barredo et al. (2003) 0.62–0.93
Barredo et al. (2004) 0.63–0.88
Cheng and Masser (2004) 55
Engelen et al. (1999) 0.88–1
He et al. (2006) 0.73–0.80
He et al. (2008) 0.75–0.86
Lau and Kam (2005) 82.9–99.5 0.71–0.99
Li and Liu (2006) 82–86 0.51–0.53
Li and Yeh (2001) 79
Li and Yeh (2002a) 83
Li and Yeh (2004) 72.4–82
Liu et al. (2008a) 76.8–83.3 0.53–0.64
Liu et al. (2008b) 74.1–79.0 0.48–0.57
Sui and Zeng (2001) 71–83
White et al. (1997) 0.51–0.69
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Wu (2002) 72.6–79.5
Wu and Webster (1998b) 68.9–81
Yang et al. (2008) 84.9–87.25 0.68–0.7

cult and impedes non-expert users to apply such models.
ome authors have developed independent software applica-
ions, such as AUGH (Besussi et al., 1998), or iCity (Stevens
nd Dragicevic, 2007). Among the few applications available are
LEUTH (http://www.ncgia.ucsb.edu/projects/gig/) and DINAMICA
http://www.csr.ufmg.br/dinamica/).

.6. Accuracy of the results

Overall, the accuracy of these models is good (Table 8). Never-
heless, the results are not directly comparable because they are
argely dependent on the land-use pattern of each area. However,
ll the models considered the total surface area of the study area
nd, therefore, the percentage of cells that changed land use with
espect to the total number of cells was usually low. By excluding
he area that was already developed at the beginning of the simu-
ation, Jantz et al. (2003) obtained an accuracy of 19% and a k value
f 0.19. However, when the entire surface area was considered,
he accuracy amounted to 93.1% for an area in which the devel-
ped area accounted for 22% of total area. Overall accuracy will be
ess significant for areas in which the developed area is smaller.
onsequently, when the evaluation is performed without exclud-

ng the area in which land uses remain constant, such an evaluation
hould include at least the proportion of converted area. Almeida
t al. (2008) have solved this problem by using a fuzzy similarity
etric to compare patterns.

. Conclusions

Urban CA models provide a tool with great potential for the
evelopment of operational models that generate realistic urban
atterns, and contribute to a better understanding of urban dynam-

cs and theories. The main strength of CA-based models is their
bility to integrate the modeling of the spatial and temporal dimen-
ions of urban processes. Yet, the main reason for the widespread
cceptance of these models is their simplicity. Anyway, the relative
implicity of CA-based models is also their main weakness insofar
s flexibility limits the ability of the model to represent real-world
henomena, thus leading to the relaxations mentioned earlier in
his paper. As stated in Section 4.1, when modifications are too

xtensive, it remains in doubt as to whether urban CA actually con-
titute CA at all. Another shortcoming of urban CA is the lack of a
tandard method for the definition of transition rules, although this
llows modelers to design the most suitable model for each case.
he main difficulty is the definition of simple rules that represent
Planning 96 (2010) 108–122

the complexity of the processes. The tradeoff between simplicity
and flexibility in the design of the transition rules has been dis-
cussed in Section 4.2. Other difficulties for the implementation of
urban CA models, described in Sections 4.4 and 4.5, include data
requirement and the lack of easily configurable and usable soft-
ware. Because of the above shortchomings, the use of urban CA
models is most often limited to academic exercises.

In recent years, many researchers have focused on calibration
because calibration is a key aspect to achieve reliable simulations
and, therefore, to apply CA-based models to practical cases of urban
planning. Recently, some authors have used artificial intelligence
techniques to calibrate urban CA models or to define the transition
rules of the models. Other authors have focused on the analysis of
the effects of the different parameters included in the model, such
as neighborhood type and size (Kocabas and Dragicevic, 2006b),
cell size (Dietzel and Clarke, 2004; Jantz and Goetz, 2005; Samat,
2006), both (Ménard and Marceau, 2005), land-use classes (Dietzel
and Clarke, 2006) or temporal resolution (Liu and Andersson, 2004).
However, the impact of other factors such as cell type or the
stochastic component remains unstudied.

Further research in this area would involve the development of
new validation methods, based on urban pattern recognition, and
the exploration of the CA potential for integration with other con-
ventional geographical and urban theories, which would provide
urban CA with a better developed theoretical background. Simi-
larly, by integrating CA-based models with other techniques such as
multi-agent systems or transportation models, hybrid models that
overcome some deficiencies of CA could be obtained (e.g. Torrens
and Benenson, 2005). Finally, further demonstrations of how such
models can help solve practical planning issues are required (e.g.
Berling-Wolff and Wu, 2004b; Jantz et al., 2003; Syphard et al.,
2005). Mainly, such models will be not be used to exactly predict
a phenomenon, but to interactively simulate different scenarios by
modifying the parameters of the model.
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