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Cellular automata (CA) stand out among the most commonly used urban models for
the simulation and analysis of urban growth because of their ability to reproduce com-
plex dynamics, similar to those found in real cities, from simple rules. However, CA
models still have to overcome some shortcomings related to their flexibility and dif-
ficult calibration. This study combines various techniques to calibrate an urban CA
that is based on one of the most widely used urban CA models. First, the number
of calibration parameters is reduced by using various statistical techniques, and, sec-
ond, the calibration procedure is automated through a genetic algorithm. The resulting
model has been assessed by simulating the urban growth of Ribadeo, a small village
of NW Spain, characterized by low, slow urban growth, which makes the identifica-
tion of urban dynamics and consequently the calibration of the model more difficult.
Simulation results have shown that, by automating the calibration procedure, the model
can be more easily applied and adapted to urban areas with different characteristics and
dynamics. In addition, the simulations obtained with the proposed model show better
values of cell-to-cell correspondence between simulated and real maps, and the values
for most spatial metrics are closer to real ones.

Keywords: urban growth; urban simulation; urban development

1. Introduction

Urban growth patterns arise from complex dynamics that are difficult to analyze because
they stem from nonlinear and emergent processes caused by the interaction of several fac-
tors at a local scale (Allen 1997). Consequently, efficient tools are needed to scientifically
study urban growth events, such that the problems derived from such events can be man-
aged. Improving the knowledge and the analysis capability of urban dynamics allows for
the design of more effective urban planning policies, the determination of the consequences
of current planning instruments and the prediction of future problems derived from current
decisions.

Cellular automata (CA) stand out among the most commonly used urban models for
the simulation and analysis of urban growth because of their ability to reproduce complex
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2 A.M. García et al.

dynamics, similar to those found in real cities, from simple rules. In addition, because CA
models operate on a Euclidean space divided into an array of identical cells, they can easily
incorporate raster data obtained from aerial photographs, satellite images, or GIS software.
For the same reason, the results of the model can be visualized and analyzed directly within
a GIS.

CA were developed in the 1940s, but their development as urban growth simulation
tools was not attained until the 1990s (Berling-Wolff and Wu 2004a). There are many
examples of the application of urban CA models to the simulation of growth in big cities
such as Buffalo (Xie 1996), Cincinnati (White et al. 1997), San Francisco, the metropolitan
area of Baltimore/Washington (Clarke and Gaydos 1998), Dublin (Barredo et al. 2003),
Lagos (Barredo et al. 2004), Tokyo (Arai and Akiyama 2004) or San Diego (Kocabas and
Dragicevic 2006).

Most of the existing models were developed in the field of scientific research to test
urban theories or study the dynamics of real cities. However, CA models are yet to over-
come some inherent problems such as lack of flexibility and adaptability to different urban
dynamics, and the need for calibration methods that facilitate their implementation in urban
areas with different characteristics (Santé et al. 2010).

The most traditional methods for the calibration of urban CA models are based on trial
and error (Ward et al. 2000, Silva and Clarke 2002, Barredo et al. 2004; He et al. 2008)
or on statistical techniques such as logistic regressions (Sui and Zeng 2001). In recent
years, more elaborate empirical calibration methods have been developed (for example,
see the article by Straatman et al. 2004). However, these methods are inapplicable to mod-
els of considerable size, which has given rise to the development of new techniques, which
include neural networks (Yeh and Li 2003), data mining (Li and Yeh 2004) and, particu-
larly, heuristic optimization techniques such as ant colony optimization (Liu et al. 2008),
exhaustive search (Shan et al. 2008), or simulated annealing and genetic algorithms, which
are the two most robust and widespread heuristic techniques used to solve optimization
problems. A number of authors have used genetic algorithms (GAs) to calibrate CA mod-
els (Jenerette and Wu 2001, Goldstein 2003, D’Ambrosio et al. 2006, Li et al. 2007, 2008,
Shan et al. 2008). Indeed, Al-Ahmadi et al. (2008) have demonstrated that GAs are more
efficient than simulated annealing for CA calibration.

Most of the existing models were designed and evaluated for large cities, where urban
growth is high and fast, which makes the identification of urban growth processes and
drivers easier. For this reason, the application of these models to urban areas with differ-
ent characteristics, such as areas with low and slow growth, is often difficult (García et al.
2012). This paper presents a method for the calibration of an urban CA model based on the
combined use of statistical techniques and a GA. The proposed model and the calibration
method presented here improve the adaptation of an urban CA model to the specific char-
acteristics of the study area, which increases its flexibility. In addition, the calibration
procedure has been automated to make it easier. The efficiency of the statistical and heuris-
tic calibration methods used was evaluated by applying the model to Ribadeo, a small
settlement of NW Spain characterized by slow urban dynamics and scattered growth along
the major road (García et al. 2011b). The paper describes the structure of the model, based
on the model of White et al. (1997), and explains the calibration procedure. Compared to
the original model, the calibration procedure introduces two new features: the reduction
of the number of calibration parameters using statistical techniques, and the calibration
of the remaining parameters through a GA. Following the explanation of the calibration
procedure, the results of the application of the model to the simulation of urban growth in
Ribadeo are discussed and the conclusions are presented.
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2. Urban cellular automata model

A large number of urban CA models have been developed and used both at the theoretical
level for the study of urban dynamics, and at a practical level for the simulation of urban
growth in real cities. The first widespread empirical application of these models was devel-
oped by White et al. (1997) based on the previous models of White and Engelen (1993,
1997). In contrast to most urban CA found in the literature, the model of White et al. (1997)
simulates the dynamics of various types of land uses, instead of only urban and nonurban
land uses. By simulating the dynamics of various types of land uses, the model captures
the differences between the dynamics of the various land uses present in the study area
with a greater degree of detail (Berling-Wolff and Wu 2004b). Another advantage of this
model is the flexibility provided by the neighborhood (Santé et al. 2010), which models
the influence of the neighboring land uses according to the distance from each neighbor-
ing land use to the cell for which the transition potential is calculated. In addition, the
transition rules of the model of White et al. (1997) are quite close to the formal rules of
orthodox CA, which helps preserve much of the simplicity of these models and facilitates
the analysis of the results obtained. Because of these advantages, many recent urban CA
models have based their structure on the structure of the model of White et al. (for exam-
ple, Barredo et al. 2003, 2004, Yüzer 2004, Kocabas and Dragicevic 2006). However, such
models have inherited from the model of White a complex calibration derived from the
large number of parameters involved. This paper proposes a model inspired by the original
rules of the model of White that keeps the advantages of the original model while at the
same time overcomes the calibration complexity by automating calibration using statistical
techniques and a GA.

2.1. Model of White et al.

The model developed by White et al. (1997) considers two types of land uses: fixed land
uses, which influence the dynamics of other land uses but do not change their state, and
active land uses, which influence the dynamics of other land uses and change their state
according to the simulated growth demand for that land use. The model of White is an
exogenously constrained CA in which land-use demand is determined exogenously. The
transition rule of the model is based on Equation (1), which provides the transition potential
of each cell from land use h to each active land use j (Phj):

Phj = vsj

(
1 + Nj

) + Hj (1)

where sj is the cell suitability for land use j, Nj is the neighborhood effect, and Hj is
an inertia parameter that models the resistance of land use h to change to land use j.
ν is a stochastic variable that introduces randomness in the model and is determined by
Equation (2):

v = 1 + [− ln(rand)]α (2)

where rand is a random number between 0 and 1 and α is a coefficient that controls the
degree of randomness introduced in the model. The effect of the neighborhood (Nj) is
calculated from Equation (3):

Nj =
∑

d

∑
i

mkjdIid (3)
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4 A.M. García et al.

where Iid is 1 if cell i at distance d is occupied by land use k and 0 otherwise. In White et al.
(1997), a circular neighborhood with a radius of six cells was used, where the influence of
each cell was modeled by means of a coefficient mkjd, whose value depended on land use k
in cell i and on the distance d from cell i to the central cell. Cells transition at every iteration
of the model to the land use for which the transition potential is higher until the demand
for that land use is satisfied. In the unlikely event of cells with the same transition potential
value for several land uses, a land use is assigned hierarchically by prioritizing residential
over commercial and commercial over industrial uses. The flexibility of this model gave
rise to the development of many other models that were based on it, such as the models
described by Engelen et al. (1999), White and Engelen (2000), Barredo et al. (2003, 2004),
Yüzer (2004) or Kocabas and Dragicevic (2006).

2.2. Proposed model

In the proposed model, the stochastic component of the model of White et al. (1997) was
modified based on the results of a previous study (García et al. 2011a) that showed that
the use of an exponential function like the function used by Wu (2002) helped control the
degree of randomness introduced in the model. Accordingly, the logarithmic function in
Equation (2) was replaced by the exponential function in Equation (4):

v = exp (−α × (1 − rand)) (4)

In addition, the suitability value was scaled by using coefficient β in order to model the
relative importance of suitability sj with regard to the neighborhood. Coefficient β can
give less weight (low values of β) or more weight (high values of β) to suitability in the
calculation of the transition potential, thus giving more or less importance, respectively,
to the neighborhood effect in the discrimination between cells with higher or lower transi-
tion potentials. Therefore, the suitability factor is scaled in a similar way to the stochastic
variable with the α coefficient in Equation (2).

Finally, a number of restrictions (Rj) have been introduced to consider the areas
excluded for land use j because of urban planning constraints or the presence of elements
that prevent land-use change, such as cemeteries, churches or landfills, among others. Rj

takes a value of 0 if land use j is excluded and a value of 1 if land use j is allowed. These
three modifications resulted in an equation for the calculation of the transition potential
that was quite different from the equation of the original model (Equation (5)):

Phj = Rj ∗ v ∗ sβ
j ∗ (

1 + Nj

)
j
+ Hj (5)

3. Model calibration

The main drawback of the model of White is the large number of parameters involved,
which makes the calibration process extremely complex. In most of the models inspired by
the model of White, calibration has been carried out by trial and error or expert knowledge
(e.g. White et al. 1997, Barredo et al. 2003, 2004, Yüzer 2004, Kocabas and Dragicevic
2006). Even the most modern versions of the model such as Metronamica (http://www.riks.
nl/products/metronamica) use trial and error in spite of making interface improvements
that make the model simpler to calibrate. Nevertheless, trial and error calibration is time
consuming. In addition, neither trial and error calibration nor expert knowledge calibration
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guarantees accurate results. For this reason, a method that overcomes the accuracy problem
has been designed by reducing the number of calibration parameters and calibrating the
remaining parameters using a GA.

3.1. Calculation of parameters using statistical techniques

In the original model, the suitability factor (sj) is determined by expert knowledge, usually
as the weighted summation of several suitability evaluation factors. In order to reduce the
number of calibration parameters, the weights of the suitability evaluation factors have
been determined using logistic regression.

Logistic regression allows for the analysis of the contribution of a number of indepen-
dent variables to the probability of occurrence of a dependent binomial variable that takes
a value of 1 when a specific land use is present and a value of 0 otherwise. The relationship
between the independent variables and the dependent binomial variable is established by
adjusting a linearized logistic function. A first logistic regression has been used to identify
the most significant variables for the calculation of the probability of change to each active
land use by determining the probability that variation is due to chance (Pr). If such a prob-
ability was low, the levels of significance of the variables for the prediction of change were
high. Accordingly, the variables with Pr values below 0.001 were selected for use in the
calculation of the suitability maps for each active land use using a second logistic regres-
sion. Because high-resolution maps were used, a sample of 10% of the data was selected
by using stratified random sampling in order to remove spatial correlations.

3.2. Simplification of the neighborhood coefficients

In spite of having reduced the number of calibration parameters by using logistic regres-
sions, the calibration of the model is still complex because of the large number of
parameters required to calculate the neighborhood effect. The neighborhood effect models
the influence that the land uses present in the neighborhood have on the transition potential
according to the distance from each neighboring cell to the central cell. In the proposed
model, a circular neighborhood with a radius of three cells has been used. The influence of
neighboring land uses on the transition potential of the central cell can be modeled by using
a distance function, which could take various shapes (linear, logarithmic, exponential, etc.).
Accordingly, several types of functions (Xie 1996) should be considered in the calibration
of the model. To simplify this, two linear functions have been used (Equations (6) and (7)),
which has allowed us to model various types of distance-decay functions by using only four
parameters (a, b, c, and d) for each pair of land uses (Figure 1):

f (x) = a + bx (6)

g (x) = c + dx (7)

where x is the distance between the neighboring cell and the central cell, and a, b, c and d
are the coefficients of the linear functions.

By using these two linear functions, the need to calibrate one mkjd coefficient for every
land use k and cell equidistant from the central cell is avoided (for a circular neighborhood
with a radius of three cells, seven coefficients mkjd would have to be calibrated for every
pair of land uses, as shown in Figure 2). Actually, the four parameters that define the two
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6 A.M. García et al.

a + b x

a + b x

a + b x

mkj mkj

mkjmkj

a + b x

c + d x

c + d x

c + d x

x1
x

x1
x

x1
x

x1
x

c + d x

Figure 1. Examples of simplification of distance-decay functions using two linear functions.

6

34 4

2 2

2 2

4 4

1 1

5 5

4 4

4 4

5 5

3 36 6

1

0

1

3

6

Figure 2. Cells numbered according to distance from the central cell in a three-cell radius
neighborhood.

lines (a, b, c, and d) are sufficient to model the distance-decay effect. This is achieved by
determining the cross point between both lines (x1), i.e. the point at which both lines have
the same value (Equation (8)). To calculate coefficient mkj, the f (x) function is used for
distance values between 0 and x1 and the g(x) function is used for distance values above
x1.

a + bx1 = c + dx1 ⇒ x1 = a − c

d − b
(8)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Sa

nt
ia

go
 d

e 
C

om
po

st
el

a]
, [

In
es

 S
an

te
] 

at
 0

3:
11

 0
4 

Fe
br

ua
ry

 2
01

3 



International Journal of Geographical Information Science 7

3.3. Genetic algorithm

In spite of having reduced the number of calibration parameters significantly, there are still
quite a few and, therefore, the calibration process remains complex. As aforementioned,
GA and SA are the most robust heuristic techniques to solve optimization problems, both
have been widely used for CA calibration and some authors have even proven that GA
outperforms SA by the time of calibrating CA models. For this reason, a GA was designed
to automate the calibration of the α coefficients of the stochastic variable, the β coefficients
of the suitability factor and the inertia coefficients Hj for each active land use, as well as
coefficients a, b, c, and d of the linear functions that model the distance-decay influence of
neighboring land uses on the transition potential for each active land use.

Genetic algorithms (Holland 1975) are inspired by the genetic evolution of populations
in the search for the optimal solution. First, a random initial population of possible solu-
tions is generated. Each individual in the population corresponds to a chromosome whose
alleles are the calibration parameters. The goodness of each individual is evaluated through
a fitness function. The best individuals of a generation are selected for generating an off-
spring population by means of crossover operators. In each generation, mutation operators
are used to randomly modify the allele values in order to prevent the algorithm from being
caught in a local optimum. After several generations a near optimal solution is reached.

A GA comprises the following phases: (i) initialization, during which an initial popu-
lation of random individuals is generated; (ii) evaluation, during which the fitness value of
each individual is calculated; (iii) selection, during which the best individuals are selected
according to their fitness value; (iv) crossover, during which the selected individuals are
used to create the offspring population; and (v) mutation, during which random variations
are introduced in the offspring. Each of these phases can be implemented in many different
ways (Goldstein 2003), an optimal method not existing for all the cases.

In the GA designed in this study, an initial population of 700 individuals with 117 alle-
les each (108 corresponding to the parameters of the linear functions, 3 to the α coefficients
of the stochastic variable, 3 to the β coefficients of the suitability factors and 3 to the
inertia coefficients Hj) was created by generating random numbers. Based on the findings
reported by Wu (2002), the α coefficients were forced to range from 0 to 10, whereas the
β coefficients were forced to range from 0 to 3, according to empirical results obtained in
the first tests of the algorithm. For the inertia coefficients Hj, a broad value range (from
0 to 1,000,000) was defined in order to prevent land-use transitions. For the coefficients
of the linear functions, the parameters that determine the slope of the line were calcu-
lated by generating a random angle and calculating the tangent of that angle. The other
two parameters of the linear functions were generated within a range of values [−100,
100] in order to obtain neighborhood-effect values similar to those reported by White et al.
(1997).

Once the initial population is generated, the parent population is evaluated and the best
individuals are selected by using a tournament method, according to which two individuals
are randomly selected and the individual with the highest fitness value becomes a parent.
When two parents are obtained, a crossover operator is used to generate two child solutions.
In the crossover operation, two recombination points in the chromosomes are randomly set,
from which the alleles of each parent are exchanged to generate two sons. In the tournament
process, all individuals in the population are forced to compete to be parents at least once.
The individual of the parent population with the best fitness value survives in the offspring
population. Once the offspring is obtained, a mutation rate of 0.008% is applied to all
individuals, with the exception of the survivor of the parent population.
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8 A.M. García et al.

3.3.1. Fitness function

In order to use a GA in the calibration of an urban CA, an objective function or fitness
function that allows for the comparison of the simulated and real maps must be designed.
Previous studies used only measurements of cell-to-cell correspondence (Li et al. 2007,
2008, Shan et al. 2008) or only spatial metrics (Jenerette and Wu 2001, Goldstein 2003)
as the fitness function. In the design of the fitness function for the proposed GA, it was
assumed that the indices that evaluate cell-to-cell correspondence do not consider that, if
a simulated urban cell does not match the real urban cell but is located close to it, the
result is better than if the simulated cell is located away from the real cell. To reduce this
problem, the cell-to-cell correspondence was evaluated by using the index described in
Pontius (2002), which compares maps at multiple resolutions. In addition, the simulated
and real urban spatial patterns were compared by using three spatial metrics.

The index described in Pontius (2002) is calculated by running windows at various
resolutions g (1 cell per side, 2, 3, 4, . . . , n cells per side) all over the real R and simulated
S maps. In each window, the number of cells n occupied by each land use j in the real Rn,j
and simulated Sn,j maps is calculated. The lowest value for each land use in both maps
is chosen and the values for all the land uses are added. Then, each window is weighted
by the number of cells covered by the window, Wn, and all the values of all the windows
into which the maps are divided at every resolution are added g(Ng). The resulting value is
divided by the number of cells in the map. Equation 9 is used to calculate the value of the
index for every window resolution (Pg). The index takes a value of 1 if the number of cells
for each land use in each window coincides in both maps and a value of 0 if the number of
cells does not coincide for any land use in any window.

Pg =

Ng∑
n=1

[
Wn

J∑
j

MIN(Rn, j, Sn, j)

]

Ng∑
n=1

Wn

(9)

In the fitness function, the global index P (Equation (10)), which results from the weighted
summation of the indices for each resolution, was used. The weighting coefficient Vg
for each map resolution g was obtained by means of an exponential curve scaled by the
coefficient b, which was assigned a value of −1.2.

P =

G∑
g

expb×g × Pg

G∑
g

expb×g

(10)

In addition, three spatial metrics were used in the fitness function, namely: number of
patches (NP), mean patch area (AREA_MN) and edge density (ED). These metrics allow
for the comparison of the shape and complexity of simulated and real spatial patterns. Only
the values of these metrics for the active land uses were considered in the fitness function.

The values of the spatial metrics for the simulated map were subtracted from the values
for the real map. The absolute values of the subtractions were used in the fitness function.
To make these values vary within the same range, the maximum and minimum values for
each index at every iteration of the GA were used to normalize the indices (Equation (11)).
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Finally, the normalized values were added and divided by 3. The same process was used to
normalize the values of the index proposed in Pontius (2002). The normalized value of this
index was added to the normalized value of the three spatial metrics and the resulting value
was divided by two. The inverse of the resulting value was used in the fitness function.

Normalized value = Value − Minimum value

Maximum value − Minimum value
(11)

4. Case study

The study area is located in the municipality of Ribadeo, NW Spain (Figure 3). Ribadeo is
located at a junction of important routes connecting the regions of Asturias and Galicia and
concentrates the commercial activities and services of the surrounding areas. Ribadeo has
a population of 6000 and has gained 1000 inhabitants in the last decade. The study area is
formed by the main urban core of Ribadeo and four surrounding parishes (a sub-municipal
administrative division in the region of Galicia), toward which the urban core is expanding.
The urban area of Ribadeo has experienced a slow urban growth process in the last three
decades that has taken place in relatively small, scattered plots. In addition, the evolution
of the urban spatial pattern in this area has been strongly conditioned by specific events or
characteristic elements present in the area (García et al. 2012).

Land-use maps were obtained through photo interpretation of aerial photographs of
1978, 1995, and 2007, which were used as input data for the urban CA model. In addition
to road maps obtained also by photo interpretation, a digital elevation model developed

45°0′0″N

5°0′0″W
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Figure 3. Location of the study area and land-use map of 2007.
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from the national topography map and a cadastral plot map were used. All these maps were
converted to raster format with 35 m resolution and processed to obtain the maps of the
input variables.

Land uses were classified following the model of White et al. (1997). Water bodies,
roads, institutional buildings, parks, recreational areas, and railways were classified as
fixed land uses, whereas commercial, industrial, and residential land uses were classified
as active land uses. Agriculture and forestry were classified as fixed land uses rather than
as land reserve for land uses because they influence the dynamics of the other classes but
do not take part in them, i.e. agriculture and forestry cells could transition to urban cells
but the dynamics of the agricultural and forestry land uses were not simulated.

First, the suitability maps (sj) were calculated by using the logistic regression tech-
niques described in Section 2.1.Table 1 shows the independent variables used in the first
logistic regression, which were identified as the main drivers of urban growth in the town
of Ribadeo in previous studies (García et al. 2011b). In Table 1, the most significant vari-
ables, i.e. the variables with Pr values below 0.001, were identified with ∗∗∗. The significant
variables were used in the second logistic regression to calculate the suitability maps for
the active land uses (Figure 4).

The model was calibrated using the land-use maps of 1978 and 1995. The GA was
run until the best fitness value did not increase during several iterations (Figure 5). The
coefficients obtained with the GA (Tables 2–4) were used to simulate land-use evolution
between 1995 and 2007. Results were validated through their comparison with the land-
use map for the year 2007. The amount of growth of each active land use at every iteration
was determined by dividing the real growth in the simulated period by the number of model
iterations. At every iteration, the cells transitioned to the land use with the highest transition
potential until the growth demand calculated for that land use was achieved. Once all cells
were allocated to the land use with the highest transition potential, and if the demand
calculated for a specific land use was not reached, that land use was allocated to cells
whose second highest potential corresponded to that land use.

The coefficients shown in Tables 2–4 are consistent with the land-use dynamics
observed in the study area. For example, α is high for the residential land use because this
use shows the most dispersed spatial pattern. For the slopes of the linear functions used
for the calibration of the neighborhood effect (coefficients b and d), positive coefficients
correspond to a repulsion influence and negative coefficients correspond to an attraction
influence. For example, the logic of these coefficients can be observed for the residential
land use, which is attracted by residential, park, institutional, commercial, and agricultural
land uses and repelled by water, roads, forestry, and industrial land uses in the nearest
neighborhood. Contrastingly, the residential land use is attracted by water, parks, institu-
tional, and residential land uses and repelled by roads, agricultural, commercial, forestry,
and industrial land uses in the most distant neighborhood. These coefficients, together
with a and c, allow us to draw the distance-decay-effect function for each land use in
the neighborhood.

The simulation maps of the proposed model were compared with those obtained using
the original model of White. The neighborhood parameters used in the model of White
were the same as those used in the application of this model to Cincinnati (White et al.
1997) since, according to the authors, these parameters should not vary too much between
different cities. The stochastic variable and accessibility were calibrated by trial and error,
whereas suitability was calibrated using a logistic regression and the suitability evaluation
factors considered in the proposed model.
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Figure 5. Evolution of the average value of the fitness function of the GA.

Table 5 shows the values of the metrics used to calculate the fitness function for the
proposed model and the model of White et al. (1997). The cell-to-cell correspondence
is higher for the proposed model, and the values of the spatial metrics obtained in the
simulation performed with the proposed model are closer to the actual values than those
obtained with the original model in all cases, except for the mean patch area (AREA_AM)
of the residential land use. This is because the patches generated by the model of White
are smaller than the patches generated by the proposed model, which are more similar
in size to the actual patches (shown in map in Figure 5). However, the distribution of
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Table 2. Coefficients calibrated with the GA for the calculation of the transition potential for
industrial land use.

Neighborhood land uses a b c d

Agriculture −15.73 −1.94 74.42 −11.94
Water 18.35 1.42 −82.68 7.03
Commercial 15.27 0.06 2.76 −0.50
Roads −43.73 −1.07 96.80 0.97
Forestry −19.81 2.11 55.90 0.78
Industrial −69.44 −0.15 1.19 −0.47
Institutional 89.94 −0.14 15.98 0.00
Parks 34.18 0.34 −14.99 −0.51
Residential −98.98 0.74 −85.63 −2.51

α 4.53
β 5.50
H 33, 837.97

Table 3. Coefficients calibrated with the GA for the calculation of the transition potential for
commercial land use.

Neighborhood land uses a b c d

Agriculture −1.05 0.61 33.10 −5.96
Water −25.26 −0.57 −71.82 2.14
Commercial −69.79 −2.34 −18.75 0.07
Roads 41.08 −1.60 78.94 0.02
Forestry 6.00 2.06 −99.54 −1.02
Industrial 82.46 0.64 −11.04 0.11
Institutional −80.02 0.00 41.64 −125.34
Parks −30.96 1.96 −30.85 17.19
Residential 12.17 −0.49 90.18 −0.65

α 2.78
β 1.82
H 265, 816.4

Table 4. Coefficients calibrated with the GA for the calculation of the transition potential for
residential land use.

Neighborhood land uses a b c d

Agriculture −4.58 −1.64 63.85 0.95
Water 89.51 2.64 32.25 −2.68
Commercial −39.35 −0.93 −0.55 0.86
Roads 48.06 0.21 −12.97 13.97
Forestry −49.20 1.80 −6.74 0.20
Industrial 35.41 1.98 −97.94 0.11
Institutional 92.93 −0.53 89.63 −1.23
Parks 86.09 −0.41 61.85 −5.28
Residential −67.89 −1.57 69.27 −4.70

α 5.93
β 3.44
H 113, 284.80
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Table 5. Values of the metrics used in the fitness function for the proposed and original models.

Proposed
model

Model of White et al.
(1997)

Land-use map
2007

Index described in Pontius (2002) 0.9201 0.9195

NP Residential 233 234 224
Industrial 44 46 45
Commercial 15 29 13

AREA_AM Residential 26.12 19.52 18.73
Industrial 1.96 3.24 2.07
Commercial 1.52 1.35 1.76

ED Residential 18.68 20.46 18.25
Industrial 2.90 2.4 2.66
Commercial 0.98 1.06 0.84

these patches is better in the simulation of the proposed model, as the simulation obtained
from the original model produces an excessive concentration of these patches along the
roads. This can be observed in the map, particularly in the patches of residential land use
located in the north, at the top, which correspond to growth along a secondary road. This
confirms that a single spatial metric is not sufficient to capture all the complexity of spatial
patterns, as reported by Visser and Nijs (2006). Although the spatial pattern is quite similar
to the real one, fully optimized values cannot be obtained for the spatial metrics because
the fitness function includes both spatial pattern criteria and cell-to-cell correspondence
criteria. Consequently, the algorithm searches for the compromise solution that provides
the best trade-off between both criteria.

With regard to cell-to-cell correspondence, the results are also good with indices differ-
ent from the index used in the fitness function. For example, the Kappa index has a value
of 0.9195 for the proposed model and 0.9158 for the model of White et al. (1997). Small
variations in this index are quite significant, since the proportion of cells whose land-use
changes is quite low and the unchanged remaining cells increase cell-to-cell correspon-
dence. Furthermore, the Kappa index does not allow for an in-depth analysis of cell-to-cell
correspondence (Pontius and Millones 2011, van Vliet et al. 2011). For this reason, other
metrics such as the figure of merit have been used. The figure of merit (Pontius et al. 2008)
is obtained from the number of hits (observed change predicted as change) divided by
the summation of hits, partial hits (observed change predicted as change but for a wrong
land-use category), misses (observed change predicted as persistence) and false alarms
(observed persistence predicted as change). As shown in Table 6, the figure of merit is
higher for the results of the proposed model than for the results of the original model. The
improvement of partial hits, i.e., the decrease of the errors caused by the simulation of a
wrong category of urban land use, can be attributed to the improvement of the calibration
procedure, which captures the specific dynamics of each land use more accurately.

Table 6. Figure of merit of the results obtained with the proposed and original models.

Figure of merit Hits Partial hits False alarms Misses

Proposed model 8.16% 77 6 457 404
White et al. (1997) 7.37% 68 36 436 383
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Figure 6. (a) Map simulated with the proposed model for 2007, (b) map simulated with the model
of White for 2007, (c) parishes of the study area, (d) real land-use map of 2007.

As shown in the simulation maps (Figure 6), the urban growth patterns obtained with
the proposed model are quite similar to the actual ones. Overall, the growth at the north
of the settlement and along the provincial road was correctly simulated. In addition, the
patterns obtained for the small patches located at the area in the south and along the main
road are quite similar to the real ones. The urban growth simulated with the model of White
is more concentrated along roads, and is distributed into patches that are smaller and closer
to one another than in the real map. In the visual analysis, the most easily identifiable
errors in both simulated maps correspond to industrial and commercial land uses. Because
the growth of both land uses was very low in the simulated period, the calibration procedure
could not accurately capture the dynamics and drivers of growth.

5. Conclusions

The model developed by White et al. (1997) has the advantage of using a flexible neighbor-
hood that allows for the simulation of the influence of proximity to different land uses on
the evolution of a specific land use. This characteristic provides the model with the ability
to conform to different types of urban areas, which can be characterized by specific factors
and dynamics, as in the small urban settlement analyzed in this paper. However, such a
flexibility is possible due to the large number of parameters required to calibrate the neigh-
borhood effect, which makes the calibration process complex. This paper has presented
a method that allows to automate the calibration of the model without losing flexibility
and analysis capability. This has been achieved, first, by modifying the original model to
incorporate certain restrictions and to improve the control of stochasticity and of the influ-
ence of the suitability factor. Second, the calibration of the model has been simplified by
the design of a method that comprises two procedures: the reduction of the number of
calibration parameters and the calibration of the remaining parameters through a GA.
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The application of the model to a small village of NW Spain characterized by a low,
slow urban growth that is distributed in scattered small patches and strongly conditioned
by specific events, has shown that the modifications to the original model simplified the
model without involving any loss of analysis capability or simulation accuracy, which has
enabled the use of a heuristic method to systematize calibration tasks. The automation of
the calibration process allows for a more simple application and adaptation of the model to
urban areas with different dynamics and processes.

The simulations of urban growth in the study area has shown that the results obtained
with the proposed model are better than those obtained by calibrating the original model
using trial and error and expert knowledge. The cell-to-cell correspondence between sim-
ulated and real maps is higher with the proposed model for all the analyzed indices,
particularly for the figure of merit, which distinguishes correctly predicted change from
correctly predicted persistence and considers partial hits. With regard to spatial met-
rics, the values obtained with the proposed model are better than the results of the
original model in all cases, except for the mean patch area of the residential land use.
Because the fitness function includes spatial pattern criteria (such as number of patches,
mean patch area, and edge density) and cell-to-cell criteria, the GA searches for a
compromise solution that provides the best trade-off between criteria. These results con-
firm that GA is a tool with great potentiality for urban CA calibration, in that it not
only produces better results than expert knowledge calibration, but it also automates
the calculation of the calibration parameters and avoids the knowledge of urban local
dynamics.

The design of the proposed calibration method required knowledge of statistics and
modeling, but expert knowledge is not needed once the procedure has been implemented in
the software. Running the calibration procedure with the developed software is easier than
determining the value of the calibration parameters by expert knowledge or by trial and
error. As an example, 189 calibration parameters would be needed for the case study with
the original model. The model and the calibration procedures proposed in this paper reduce
the number of parameters and automatically determine their value, thus avoiding the need
to tune a huge amount of parameters manually. This makes the application of the model
to study areas with different characteristics easier and overcomes the issues identified in
Santé et al. (2010) related to the need of making urban CA more flexible while keeping
their simplicity by developing better calibration methods. Moreover, automated calibration
improves the model results.

Future research should focus on the development of better validation methods that
allow us to capture all the complexity of urban growth patterns and to assess cell-to-cell
correspondence. Another research line is the use and testing of new techniques for the
calibration of urban CA models. In fact, some authors have already used artificial intel-
ligence techniques such as neural networks or data mining to define the transition rules
of urban CA models. This field can be explored to find new calibration methods that can
better capture urban dynamics and generate simulations that are closer to the real world.
Finally, the viability of the proposed model as a decision support tool for planning could be
evaluated by simulating future land-use scenarios under different assumptions to test the
consequences of the planning decisions.
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