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Urban cellular automata models have proved useful tools in urban growth prediction because of their
simplicity and their ability to reproduce complex emergent dynamics. Complex emergent dynamic sys-
tems involve processes that are difficult to predict, in which randomness plays a key role. In view of the
fact that randomness is particularly relevant to complex processes, the aim of this paper is to analyze the
sensitivity of the results of urban cellular automata models to the different methods used to incorporate
the stochastic component in the models. The urban growth patterns obtained using different stochastic
components are analyzed and compared using a number of spatial metrics. The results show that the dif-
ferences observed in the simulated patterns are sufficiently relevant to justify the need for this type of
analysis, which allows for the selection of the stochastic component that best suits the dynamics of
the area.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Cellular automata (CA) were first developed by S. Ulam and J.
Von Neumann in the 1950s as discrete dynamic systems in which
local interactions among components generated global changes in
space and time. White (1998) defined a CA as ‘‘a discrete cell space,
together with a set of possible cell states and a set of transition rules
that determine the state of each cell as a function of the states of all
cells within a defined cell-space neighbourhood of the cell’’. CA pro-
vided a useful tool for the study of complex systems, insofar as
CA models allow for the generation of macro-scale complex pat-
terns from simple, micro-scale rules. Early urban CA models were
implemented as abstract models for the simulation of urban devel-
opment, and were aimed at testing hypotheses derived from urban
theories (e.g. Cecchini, 1996; Itami, 1988; Phipps & Langlois, 1997;
Portugali & Benenson, 1995; Wu & Webster, 1998). These theoret-
ical approaches served as the basis for the design of CA models
aimed at simulating real-world urban development processes
(e.g. Clarke, Hoppen, & Gaydos, 1997; White & Engelen, 1997;
Xie, 1996).

Due to the complex characteristics of urban systems like emer-
gency, path dependency or self-organization, urban CA results may
be very sensitive to variations in their parameters (Manson, 2007;
Messina et al., 2008). Other authors have focused on this issue by
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analyzing the effects of the different parameters included in the
model, such as neighborhood type and size (Kocabas & Dragicevic,
2006), cell size (Dietzel & Clarke, 2004; Jantz & Goetz, 2005; Samat,
2006), both (Menard & Marceau, 2005), land-use classes (Dietzel &
Clarke, 2006) or temporal resolution (Liu & Andersson, 2004).
However, the impact of other components of CA models, among
which the stochastic component, remains almost unstudied. Yeh
and Li (2006) dealt with the effects of the stochastic perturbation
in the predictability of the models, but the influence of the differ-
ent methods used to introduce randomness in the results of the
model and in the generated urban patterns has not been studied.

The incorporation of a stochastic component in urban CA mod-
els responds to the need to model the uncertainty associated with
urban processes. Urban growth presents some unpredictable fea-
tures that cannot be explained by deterministic variables (Yeh &
Li, 2006). Accordingly, most urban CA models incorporate stochas-
tic parameters to produce more realistic simulations. According to
White and Engelen (1993), cities reflect social processes. Because
social and biological processes occur in variable environments,
their ability to evolve in order to adapt to the medium becomes
essential. Without such ability, these processes cannot survive.
Evolvability requires a system to be at the transition point between
order and chaos, such that the system is not just chaotic or ordered,
but complex. White and Engelen (1993) provide the example of the
genes that compose the gene pool of a population. If such genes did
not mutate, i.e., if the genes in the gene pool of a population re-
mained in a constant state of equilibrium, the population would
not be able to adapt to environmental changes. Conversely, if many
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mutations occurred, the gene pool would deteriorate and the pop-
ulation would eventually disappear.

In urban CA models, ‘mutations’ in urban growth processes are
simulated by introducing some randomness. The degree of ran-
domness introduced in the models can be adjusted in different
ways in order to obtain an amount of mutations that makes the
system evolve between order and chaos, i.e., that makes the system
complex. Therefore, the stochastic component is critical to address
the uncertainties in complex geographical phenomena (Li & Yeh,
2004).

This paper analyzes the effects of the two most widely used ap-
proaches for considering ‘mutations’ in CA models on the gener-
ated urban patterns. The results of the analysis provide the
information required to assess the advantages and shortcomings
of each approach.

First, the most widely used methods for introducing and adjust-
ing randomness are presented. Then, the methodology used in this
paper to analyze the effects of the different methods on the simu-
lations is described. In addition, the growth patterns obtained for
the case study using the different methods are analyzed based on
a number of spatial metrics. Finally, the results of the analysis
and the conclusions drawn from such results are presented.
2. Introducing randomness in urban CA models

In regard to the methods used to introduce randomness in ur-
ban CA models, there are two principal types of models: (a) models
that include a stochastic perturbation, such as the stochastic dis-
turbance term proposed by White and Engelen (1993), in the tran-
sition rule (Cheng & Masser, 2004; He, Okada, Zhang, Shi, & Zhang,
2006; White & Engelen, 2000; Yang, Li, & Shi, 2008), and (b) models
that introduce randomness when deciding which cells must
change state, among which the models based on a Monte Carlo
method that compares the transition probability for each cell with
a random number, such that the cell will change state only if its
probability is higher than the random number (Almeida et al.,
2003; Jenerette & Wu, 2001; Li & Liu, 2006; Liu, Li, Liu, He, & Ai,
2008; Wu, 2002). Alternatively, the heuristic approach can be
implemented by comparing growth rate and a random number
in order to adjust the transitions to the amount of land use conver-
sion observed in real urban systems (Li & Yeh, 2004; Liu et al.,
2008).

The stochastic perturbation proposed by White and Engelen
(1993) is computed from the following equation:

R ¼ 1þ ð� lnðrandÞÞa ð1Þ

where rand is a random number between 0 and 1, and a is a param-
eter that controls the size of the stochastic perturbation introduced
in the model. High values of a imply that extreme values of rand are
given more weight. Conversely, if the value of a is low, the extreme
values of rand are given less weight. Therefore, the stochastic dis-
turbance term will produce a larger or smaller stochastic perturba-
tion in the transition potential for a cell depending on the value
assigned to a.

Wu (2002) suggests that including a stochastic perturbation in
the transition rule in order to force the transition of the cells with
the highest potential for transition introduces a bias in the model,
because the cells with lower transition potentials can also change
state, but with a lower probability. For this reason, the author pro-
poses the Monte Carlo approach as a more realistic method for
selecting the cells that change state. Yet, the Monte Carlo approach
has weaknesses, as it does not allow for the control of the degree of
randomness or the total amount of simulated growth. To control
both factors, Wu (2002) incorporates two equations.
As the ideal site changes with each iteration, the maximum po-
tential value, max(P), is recalculated at each iteration using an
exponential distance-decay function to transform the probability
of site conversion, comparing its value with the probability of the
best site:

P0 ¼ P � exp½�d � ð1� P=maxðPÞÞ� ð2Þ

where P is the transition potential and d is a dispersion parameter
that controls the shape of the distance-decay function, so that the
higher is the value of d, the steeper the distance-decay gradient
(Wu, 2002). Consequently d has a function similar to the function
of a in Eq. (1), i.e. d controls the degree of randomness introduced
in the model (Wu & Martin, 2002, pp. 1861), though in a different
way. Eq. (1) scales the stochastic perturbation and therefore deter-
mines the degree of stochasticity in the calculation of P. However, in
order to adjust the degree of randomness using the Monte Carlo ap-
proach, the transition potential must be scaled considering the
maximum value of the probability as a benchmark. Therefore, high-
er values of d will depress probability away from its maximum score
such that greater discrimination between cells is obtained. Accord-
ingly, the cells with higher values will be more differentiated from
those with lower values, and there will be less probability that the
latter will transition. Consequently, the degree of randomness will
be lower.

Once the potentials have been scaled, Eq. (3) is used to control
total urban growth:

P00 ¼ P0P
P0
� N ð3Þ

where N is the number of transitions that must occur in each itera-
tion of the model, which is determined exogenously to the model.
Once P00 has been obtained, a random number between 0 and 1 is
generated, such that the cell changes state if the value of P0 is above
the random number generated. Otherwise, the cell will not change
state.

In view of the key role of randomness in achieving the complex-
ity of urban dynamic systems, and considering the different meth-
ods that can be used to introduce randomness in urban CA models,
among which the two methods explained above, we have analyzed
both methods in order to determine whether significant differ-
ences are found in the results of an urban CA model when using
either method.
3. Methods

To better analyze the effects of the stochastic component on the
output of the model, we used the simplest possible urban CA mod-
el. The model proposed by Wu (2002) is simple and easy to cali-
brate, and allows for the use of the two methods for introducing
randomness that are analyzed above. For this reason, we used
the model proposed by Wu (2002) as a basis for the analysis.

The model developed by Wu (2002) calculates the transition
potential from the following equation:

P ¼ p � n
8

ð4Þ

where n is the number of urban cells in the neighborhood (the mod-
el uses a neighborhood of 3 � 3 cells), which, divided by 8 (the
number of cells in the neighborhood excluding the central cell),
yields the probability of development for a cell as a function of
the neighborhood; and p is the probability of development for a cell,
calculated as a function of the considered variables using logistic
regression. To keep the model as simple as possible, only three vari-
ables were used: slopes, distance to roads and distance to the center
of an urban core.
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Logistic regression is an statistical method used to determine
the probability of a dependent variable to take values of 1 or 0,
which correspond in this case to urban and non-urban land uses,
respectively, as a function of a number of independent variables
(in this case slope, distance to roads and distance to the center of
Ribadeo). Such a probability is calculated from the following
equation:

pðy ¼ 1jXÞ ¼ exp
P

BXð Þ
1þ exp

P
BXð Þb ð5Þ

where p is the probability for a dependent variable to take a value of
1 (urban), X is the vector of independent variables, and B is the vec-
tor of the regression parameters.

The stochastic component can be introduced in the model using
two approaches: (a) by multiplying the transition potential P for
each cell by the stochastic perturbation R, calculated from Eq.
(1), and selecting the cells with the highest resulting transition po-
tential P0 to be converted to urban; or (b) by applying the Monte
Carlo approach using Eqs. (2) and (3).

The comparison of approaches (a) and (b) as described above re-
veals a problem: if a cell does not have any urban neighbor, the
transition potential P, calculated from Eq. (4), is zero. This means
that the model will not be able to generate spontaneous growth
and, consequently, it will not be able to simulate dispersed pat-
terns. To solve this problem, the following equation is used:

P ¼ p� n
8
þ 1

� �
ð6Þ

In brief, the probability of development is calculated using Eq. (6). If
randomness is introduced in the model using the stochastic pertur-
Fig. 1. Location of the study area an
bation, such a probability of development is multiplied by the value
obtained from Eq. (1) to calculate P0, and the cells with the highest
values of P0 are selected to change state. The number of cells se-
lected must be equivalent to the growth expected at each iteration
of the model. In this paper, we have considered that urban growth
at each iteration equals the land area developed during the period
used to calibrate the model, divided by the number of years com-
prised in such period. If randomness is introduced in the model
by using the Monte Carlo approach, P is determined first, and then
Eqs. (2) and (3) are used to calculate P00. Once P00 has been calculated,
the cells that are converted to urban are selected by comparing the
value of P00 with a random number between 0 and 1.
4. Case study

The models described in the previous section were applied to the
urban settlement of Ribadeo, NW Spain, and to the four surround-
ing parishes: Vilaselán, Vilaframil, Piñeira and Obe (Fig. 1). Three
land use maps produced in 1978, 1995 and 2007, and derived from
aerial photo interpretation were used. The maps of 1978 and 1995
correspond to the only historical aerial photographs available in
this area, and therefore to the only source of information useful
to obtain land use maps at the scale required in this study. The maps
produced in 1978 and 1995 were used to calibrate the model, and
the map produced in 2007 was used to compare the simulated ur-
ban patterns with the real ones. To obtain the variables considered
to calculate the probability of development (slope, distance to
roads, and distance to Ribadeo town center), we used a digital ter-
rain model and a number of road maps available, which were cor-
rected and updated using aerial photographs.
d urban growth map of 2007.



Table 1
Results obtained for different values of d using the two methods for introducing
randomness in the model.

d NP AREA_MN FRAC_AM ENN_MN

Monte Carlo
1 460 0.55 1.17 110.47
3 339 0.71 1.18 110.36
5 285 0.86 1.18 115.08
7 248 0.99 1.18 116.90
9 220 1.09 1.18 114.23
a NP AREA_MN FRAC_AM ENN_MN

Stochastic perturbation
1 204 1.19 1.18 114.15
3 343 0.71 1.18 105.50
5 417 0.58 1.16 107.02
7 496 0.49 1.14 105.73
9 518 0.47 1.14 106.75

NP AREA_MN FRAC_AM ENN_MN

Real data for 2007
232 1.08 1.18 106.91
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The results of the two models were compared in order to ana-
lyze the differences between the growth patterns obtained based
on spatial metrics. Spatial metrics were first developed in the field
of landscape ecology to study landscape diversity and complexity.
Later, spatial metrics were used by a number of authors to analyze
and characterize urban growth patterns in order to find links be-
tween the patterns and the dynamics that generated such patterns
(Dietzel, Herold, Hemphill, & Clarke, 2005; Herold, Goldstein, &
Clarke, 2003; Lagarias, 2007; Seto & Fragkias, 2005; Thomas, Fran-
khauser, & Biemacki, 2008).

By introducing randomness in CA models, complex patterns can
be obtained and dispersed growth patterns emerge. As suggested
by White and Engelen (1993), the stochastic effects are stronger
in the early stages of urban growth because growth is more dis-
persed. As the city grows, the vacant zones among urban patches
are filled and nucleate. In this stage, stochastic effects are weaker.
Next, the city continues to evolve and expands outwards, generat-
ing new dispersed growth, which will be absorbed by the growth of
the city core. Thus, the degree of stochasticity is related to the com-
plexity and compactness of the generated urban patterns, and
these spatial characteristics can be analyzed by using spatial
metrics.

Spatial metrics are criticized as not to be the better tools to val-
idate the results of a model (Brown, Page, Riolo, Zellner, & Rand,
2005). Messina et al. (2008) and Manson (2007) suggest that infer-
ring complex processes from the patterns produced by spatial met-
rics may have many shortcomings; the same complex process may
generate several different patterns or different processes may pro-
duce the same pattern due to inherent characteristics of complex-
ity. However, the main aim of this study is to test how the two
considered methods introduce randomness in the simulation, not
to determine whether the models simulate accurately the urban
patterns. Randomness is a characteristic of complex systems. As
described above, the level of stochasticity in urban CA determines
the compactness and complexity of simulated urban patterns.
Therefore spatial metrics that provide a measure of compactness
and complexity are suitable to calibrate the level of randomness
introduced by each approach.

A number of metrics can be used to measure complexity and
compactness. Many of them are commonly used to validate the re-
sults of urban CA models. Santé, García, Miranda, and Crecente
(2010) reviewed 33 urban CA models, 13 of which used spatial
metrics to validate their results. Among these 13 models, 46% used
the fractal dimension, 38% used the shape index and an edge den-
sity-based index, 31% used the Moran’s I index, 23% used the num-
ber of patches and the contagion index, the 15% the mean
Euclidean nearest neighbor and the largest patch index, whereas
the mean patch area, the splitting index, the Simpson’s index,
and the Spatial Pattern Measure were used in only one of the
models.

Taking into account that no single metric can capture complex
urban patterns (Seto & Fragkias, 2005), the selection of the metrics
was based on the most widely used metrics in previous research
for validation of urban CA models, and on their ability to quantify
the complexity and the compactness (or dispersion) of urban spa-
tial patterns, since both characteristics are related to the degree of
stochasticity. Among the metrics used to measure structural com-
plexity (fractal dimension, shape index, and edge density index),
the fractal dimension was selected because the fractal structure
of cities has been confirmed by many studies (Lagarias, 2007; Tho-
mas et al., 2008; White, Engelen, & Uljee, 1997). To analyze the
compactness or dispersion of the urban pattern, the number of
patches, the mean patch area and the Euclidean mean nearest
neighbor distance were used. The number of patches was selected
because this is the most widely used metric to measure dispersion
and it is well complemented by mean patch area and the Euclidean
mean nearest neighbor distance. A high number of patches may
indicate that the urban pattern is dispersed. Yet, it must be ana-
lyzed together with the mean patch area to check if the patches
are large or small, and with the mean Euclidean nearest neighbor
to check if the patches are close of far from one another.

Further explanations on the calculation and meaning of these
metrics are given below:

� Number of patches (NP): number of patches for each land-use
class.
� Mean patch area (AREA_MN): average area of all the patches

corresponding to a land-use class, expressed in hectares.
� Area weighted mean patch fractal dimension (FRAC_AM). This

index suggests the degree of complexity of the patches. The
value of the index approaches 1 for patches with simple perim-
eters such as squares, and 2 for patches with highly complex
and space-filling perimeters. Because FRAC_AM is an area-
weighted index, the fractal index of largest patches will be
given more weight when calculating the mean. Larger patches
are weighted because the shape of smaller patches is highly
dependent upon the spatial resolution of the images:

Pn
j¼1

2 lnð0:25pijÞ
ln aij

� �
aij

ni
ð7Þ

where pij is the perimeter of each patch j in land-use class i, aij is
the area of each patch j in land-use class i and ni is the number of
patches in land-use class i.
� Euclidean mean nearest neighbor distance (ENN_MN): this

index calculates the Euclidean distance mean value in meters,
to the nearest neighboring patch based on the shortest distance
from cell center to cell center.
The above spatial metrics were calculated for the patterns gen-

erated using the two methods for introducing stochasticity in the
models, stochastic perturbation R and the Monte Carlo approach,
for different values of d and a. Table 1 shows the results obtained
for the spatial metrics considered.

As shown in Table 1, the values of the spatial indices show
opposite trends for the two methods used. For the Monte Carlo ap-
proach, the increase in the value of d causes a decrease in the num-
ber of patches, which suggests a more compact growth pattern.
The reason for this is that as the value of d increases, the exponen-
tial curve that scales the transition probability will be more
skewed and similar values will be more distant to one another,
therefore the Monte Carlo method will be able to differentiate bet-
ter between cells with similar values, such that those with higher
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values will always be selected for transition and more compact
patterns are generated. Conversely, in the stochastic perturbation
approach, the value of a acts directly on the stochastic perturba-
tion, such that if the intermediate values of the probability of
development for a cell are given less weight and extreme values
are given more weight, more dispersed patterns are generated.

The comparison of both methods using different values of d and
a reveals that the spatial metrics of the generated growth patterns
do not show remarkable differences between the two methods.
However, it can be observed that the stochastic perturbation pro-
duces a wider range of values for all metrics and increases in the
Table 2
Spatial metrics obtained for the real map and the simulated map using stochastic
perturbation (a = 1) and the Monte Carlo method (d = 7.5).

NP AREA_MN FRAC_AM ENN_MN

Real 2007 232 1.08 1.18 106.91
Simulated 2007 d = 7.5 231 1.04 1.16 116.21
Simulated 2007 a = 1 204 1.19 1.18 114.15

Table 3
Coefficients of variance for the values of spatial metrics obtained from 100
simulations of the model using the Monte Carlo approach and the stochastic
perturbation method.

NP AREA_MN FRAC_AM ENN_MN

CV (Monte Carlo d = 9.9) 0.024 0.026 0.005 0.018
CV (Stochastic Pert. a = 0.1) 0 3.61E�16 1.16E�15 1.23E�16

Fig. 2. Number of times that each cell was developed throughout the 1
value of a produce higher variations of the results, specially for
high values of a. This is particularly evident in metrics FRAC_AM
and ENN_MN. This fact involves a higher complexity in the calibra-
tion of the stochastic perturbation method to get urban patterns
with a complexity and dispersion similar to that of the real
patterns.

After having compared the results obtained for both methods,
we analyzed which of the methods for introducing randomness
in the model yielded the values that were nearest to the real val-
ues. To this end, we compared the results of the models with the
spatial metrics obtained from real maps produced in 2007 (Table
1). As shown in Table 1, the values that best fit the real values
are those obtained using d = 9 for the Monte Carlo approach and
a = 1 for the stochastic perturbation approach.

Further tests were conducted by varying the values of d and a,
to check whether better results were obtained. The stochastic per-
turbation was very difficult to control; for a value of a = 2 the ob-
tained patterns were too dispersed and for values between 1 and 2
the results were not better that for a = 1. With the Monte Carlo ap-
proach the best results were obtained with a value of d = 7.5, for
which the NP and the AREA_MN were almost equal to the real val-
ues. Table 2 illustrates the superiority of the stochastic perturba-
tion in simulating the degree of fractality and the superiority of
the Monte Carlo approach in simulating patch dispersion.

To verify which method produced the most stable results, the
coefficient of variation was used to analyze the variability in the
spatial metrics obtained for the patterns from 100 simulations of
each model. Low stochastic perturbations were used in order to
avoid that variability in results could be attributed to a high degree
00 simulations performed with the Monte Carlo approach (d = 9.9).
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of randomness. As mentioned above, the two analyzed approaches
introduce randomness in different ways. In the Monte Carlo ap-
proach, higher values of d produce larger differences between the
resulting probabilities. As a result, it will be more difficult that cells
with lower probabilities may be converted. Thus, higher values of d
yield lower stochastic perturbations. Conversely, with the stochas-
tic variable, higher values of a produce higher differences between
high and low values of the stochastic variable. Because the stochas-
tic variable scales directly the probability of change, the stochastic
variable produces greater perturbations and therefore more
randomness.

Bearing this in mind, a high value of d (d = 9.9) was used for the
Monte Carlo approach, since d usually ranges from 1 to 10 (Wu,
2002), whereas a low value of a (a = 0.1, since a cannot get values
equal or lower than 0) was used for stochastic perturbation. Thus
the observed variability is due to the method and not to the degree
of randomness, since greater values of a and lower values of d will
only introduce higher levels of randomness and consequently more
variability. One hundred of simulations using each approach were
carried out and coefficients of variation were calculated for each
landscape metric.

As shown in Table 3, the coefficients of variation for all the indi-
ces of the patterns modeled with the Monte Carlo approach are
higher. These results show that, for the most common range of val-
ues of both indices, the Monte Carlo approach produces more var-
iable patterns than stochastic perturbation.

The variability in the results can also be confirmed by defining a
map of development probability based on the data obtained from
the 100 simulations performed (Yeh & Li, 2006). Thus, the number
of times that a cell is converted to urban in the 100 simulations is
Fig. 3. Number of times that each cell was developed throughout the 100 si
graphically represented. If the results are uniform, there will be a
lot of cells that are converted to urban in most of the simulations,
i.e. there will be a large number of cells with a high probability to
be converted throughout the 100 simulations. If the results are
very variable, there will be a lot of cells with a low probability to
be converted to urban in a given simulation. As shown in Fig. 2,
the results of the Monte Carlo approach are highly variable because
many cells were converted to urban throughout the 100 simula-
tions. The opposite is observed for stochastic perturbation
(Fig. 3). According to these maps, the Monte Carlo approach intro-
duces a lot of stochastic uncertainty (Brown et al., 2005), such that
the results are more difficult to predict.

In addition, we analyzed the types of growth generated in each
simulation and the area that corresponded to each type of growth.
Xu et al. (2007) classified urban growth into three types: (a) spon-
taneous growth, in which the new urban patches have no direct
connection with the existing urban patches, (b) edge-expansion
growth, which refers to the newly developed urban area spreading
out from the fringe of existing urban patches, and (c) infilling
growth, which refers to converting the vacant lots existing be-
tween urban patches or within an urban patch to urban land. These
authors have proposed an index to identify the three growth types,
which is determined by dividing the length of the common bound-
ary of a newly grown urban area and the pre-growth urban patches
by the total perimeter of the newly grown area. If the value of the
index is equivalent to zero, the patch is identified as spontaneous
growth because it does not have any common boundaries with
existing patches; if the index takes a value between 0 and 0.5,
the patch corresponds to edge-expansion growth; and if it takes
a value above 0.5, the patch is identified as infilling growth.
mulations performed with the stochastic perturbation method (d = 0.1).



Fig. 4. Area (ha) for spontaneous growth (SG), edge-expansion growth (EG) and infilling growth (IG) obtained from the simulations performed with the Monte Carlo approach
Monte Carlo (MC) and stochastic perturbation (SP) for different values of d and a.
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In our analysis, the index proposed by Xu et al. (2007) was ap-
plied to every patch, and the patches that corresponded to each
type of growth were grouped in order to calculate the areas for
the three types of growth obtained in each simulation using the
Monte Carlo approach and the stochastic perturbation method
(Fig. 4). If the patterns are scattered and complex, the amount of
spontaneous growth will be high, whereas if they are compact
and regular, infilling growth will be higher.

As shown in Fig. 4, in the simulations performed using the sto-
chastic perturbation method the increase in spontaneous growth
and the decrease in infilling growth are very abrupt for low values
of a. It can be identified a point around a = 5 where the increase of
spontaneous growth and decrease of infilling growth becomes al-
most asymptotic. This is due to the logarithmic curve which is used
to scale the stochastic perturbation. In the Monte Carlo approach,
the curve used to control the degree of randomness is exponential.
Consequently, when randomness increases, the increase in sponta-
neous growth and decrease in infilling growth becomes more
linear.

In regard to the analysis of edge growth, in the stochastic per-
turbation approach, edge growth decreases with the increase in
stochasticity. The Monte Carlo approach shows a similar behavior,
but there comes a point where the trend is reversed (d = 3). This is
related to the fact that a slight increase in stochasticity causes a de-
crease in infilling growth and a increase in edge growth and spon-
taneous growth. Conversely, when the increase in stochasticity is
higher, both infilling and edge growth decrease, which leads to a
further increase in spontaneous growth. In the stochastic perturba-
tion approach, the logarithmic shape of the function causes a more
abrupt increase of the stochasticity, which prevents this intermedi-
ate step, because it causes a direct decrease in edge and infilling
growth that leads to an increase in spontaneous growth. This fact
confirmed the difficulty of calibration of the stochastic
perturbation.

5. Discussion and conclusions

Most urban CA models incorporate a stochastic component with
a view to generating the complexity inherent in urban systems.
Assuming that complexity is a state between order and chaos,
and that achieving complexity requires that the right degree of
randomness be introduced in the models, the analysis of the most
suitable method to introduce the appropriate degree of random-
ness becomes essential. For this reason, this paper has explored
the influence of different stochastic components on the spatial pat-
terns of urban growth generated by a CA model. To this end, we
compared the results obtained using two methods for introducing
randomness in the model, based on stochastic perturbation and the
Monte Carlo approach, respectively.

The authors who have used the Monte Carlo approach in their
models argue that this approach provides a more realistic way of
considering randomness and deciding which cells must change
state, because the probability for a cell to change state is propor-
tional to the transition potential of the cell. However, in the light
of the results of this research, it can be affirmed that the Monte
Carlo approach produces a greater degree of stochastic uncertainty
(Brown et al., 2005) in the resulting patterns, yielding more scat-
tered urban patterns and therefore a higher amount of spontane-
ous growth. This greater degree of stochastic uncertainty
produces more different patterns in each run of the model. This
makes more difficult to reproduce real growth patterns, so the
model will yield worse results.
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On the other hand, Monte Carlo method permits a better control
of the degree of randomness introduced in the model due to the
usage of an exponential curve to scale this factor. Thus more com-
pact urban patterns are obtained. The logarithmic curve used in the
stochastic perturbation produces more abrupt variations in the de-
gree of randomness, i.e. produces higher changes in the degree of
randomness for lower variations in the coefficient that controls
the shape of the curve. Therefore, the fine-tuning of the degree of
randomness is more difficult when using the stochastic perturba-
tion, so the model calibration needed for the matching of simulated
and real patterns will be more hardly achieved.

These two shortcomings could be overcome by taking advan-
tage of the lower degree of stochastic uncertainty introduced by
the stochastic perturbation and the better capability of the Monte
Carlo approach to scale randomness. This may be achieved by scal-
ing the stochastic perturbation with an exponential curve.

Finally, this paper points to the need to perform analyses of this
kind, which allow for the selection and calibration of the stochastic
component that best suits the dynamics of the analyzed area. Fu-
ture research should be focused on methods to better control the
degree of randomness, for example, conducting sensitivity analysis
of how different kinds of curves can scale the randomness intro-
duced in the models.
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